
OpenAFS and Secure 
Boot
​OpenAFS Workshop - June 10-11 2024
​Erik Beatty | IT Cloud Architect, Sr Staff | Qualcomm 
Incorporated

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its 
subsidiaries. Qualcomm patented technologies are licensed by Qualcomm Incorporated. 



2

What is Secure Boot?
• Part of the UEFI specification

• Tries to guarantee that only trusted software can be loaded 

• Boot loader, OS, drivers, etc all need to be signed by a trusted certificate
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The problem
• We use dkms to build and deploy the client OpenAFS kernel module

• As-is, the kernel module is unsigned and results in the following:
• modprobe: ERROR: could not insert 'openafs': Operation not permitted (from yum output)
• Lockdown: modprobe: unsigned module loading is restricted; see man kernel_lockdown.7 (from syslog)
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Getting started
• Secure Boot allows for the import of a Machine Owner Key (MOK) that can be used to 

sign modules

• Install packages

• Checking if Secure Boot is enabled

• Generate the cert and import
• For some reason the MOK manager interface would not come up after reboot, I ended up having to use the ‘mokutil --

set-verbosity true’

$ yum install openssl mokutil keyutils

$ openssl req -new -x509 \
    -newkey rsa:2048 -keyout /root/openafs.key \
    -outform DER -out /root/openafs.der \
    -nodes -days 36500 -subj "/CN=OpenAFS Kmod Signing MOK"

$ mokutil --set-verbosity true

$ mokutil --import /root/openafs.der

$ reboot

$ mokutil --sb-state
SecureBoot enabled
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Manually signing
• Next up, getting the dkms module to use the self-signed key

• For some reason dkms was not reading the SIGN_TOOL directive from the 
/etc/dkms/<module>.conf, I’ve read a few posts now that state that has been 
restricted to the /etc/dkms/framework.conf

• Just to do the initial validation I was able to unxz the /lib/modules/$(uname 
–r)/extra/openafs.ko.xz and manually run the script to sign it

• After that I re-xz’d the file and was able to insmod it successfully! So yes, we can self-
sign and load!

$ /usr/src/kernels/$(uname -r)/scripts/sign-file sha256 /root/openafs.key /root/openafs.der /lib/modules/$(uname 
–r)/extra/openafs.ko
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Automating the signing
• Continuing on with trying to automate the process

• I noticed that the dkms build itself referenced the following

• Doing some digging and I found that the /etc/dkms/framework.conf has

• I dropped a custom.conf under /etc/dkms/framework.conf.d to set those values to the custom self-
signed key

• And that worked, the caveat being that it is used for all dkms modules, not just OpenAFS, but I 
suspect we would only deploy a single custom dkms key/cert anyways, so that should be fine.

• Doing some additional searches and I found that the /var/lib/dkms/mok.pub can be imported

• So I did that and voila! That worked as well! 

Signing key: /var/lib/dkms/mok.key
Public certificate (MOK): /var/lib/dkms/mok.pub

# mok_signing_key=/var/lib/dkms/mok.key
# mok_certificate=/var/lib/dkms/mok.pub

mok_signing_key=/root/openafs.key
mok_certificate=/root/openafs.der

$ mokutil --set-verbosity true
$ mokutil --import /var/lib/dkms/mok.pub
$ reboot
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Next steps
• Proof of concept wise, being able to self-sign an OpenAFS dkms built kernel module 

and load it in a Secure Boot environment is definitely doable

• The biggest hurdle is the import of the cert, having to reboot and enter the MOK 
manager on each host does not scale

• Investigate additional tools/utilities/flows
• efi-updatevar – sounds very manual, but had the concept of delete all the keys and reload
• certmule – appears to allow for the unattended enrollment of keys into the MOK, but requires a system owner key in 

the UEFI secure boot DB
• redfish - use redfish to clear the keys, then the system is in "setup" mode for Secure Boot and then re-enroll all the 

keys starting with our own custom one as the Platform Key (PK) from the OS (in theory)

• Having discussions with various HW vendors
• Can they support custom key enrollment before shipment? 
• How about key rotations? 
• Firmware updates? 
• Security policies to protect our keys?

• Obtain a “blessed” key to sign the module?
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Links
• These were some helpful links discovered along the way

• https://gist.github.com/lijikun/22be09ec9b178e745758a29c7a147cc9 – Example of signing dkms nvidia drivers in 
secure boot

• https://github.com/dell/dkms#secure-boot – MOK overview as well as the import of the dkms mok.pub
• https://blogs.oracle.com/linux/post/the-machine-keyring - certmule example
• https://sysguides.com/fedora-uefi-secure-boot-with-custom-keys/ - lots of good details
• https://redfishforum.com/thread/572/install-certificate-secure-boot - redfish examples
• https://docplayer.net/151198843-Secureboot-certificate-management-by-using-redfish.html - more redfish examples

https://gist.github.com/lijikun/22be09ec9b178e745758a29c7a147cc9
https://github.com/dell/dkms#secure-boot
https://blogs.oracle.com/linux/post/the-machine-keyring
https://sysguides.com/fedora-uefi-secure-boot-with-custom-keys/
https://redfishforum.com/thread/572/install-certificate-secure-boot
https://docplayer.net/151198843-Secureboot-certificate-management-by-using-redfish.html
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