
OpenAFS and Secure
Boot
​OpenAFS Workshop - June 10-11 2024
​Erik Beatty | IT Cloud Architect, Sr Staff | Qualcomm
Incorporated

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its
subsidiaries. Qualcomm patented technologies are licensed by Qualcomm Incorporated.

2

What is Secure Boot?
• Part of the UEFI specification

• Tries to guarantee that only trusted software can be loaded

• Boot loader, OS, drivers, etc all need to be signed by a trusted certificate

3

The problem
• We use dkms to build and deploy the client OpenAFS kernel module

• As-is, the kernel module is unsigned and results in the following:
• modprobe: ERROR: could not insert 'openafs': Operation not permitted (from yum output)
• Lockdown: modprobe: unsigned module loading is restricted; see man kernel_lockdown.7 (from syslog)

4

Getting started
• Secure Boot allows for the import of a Machine Owner Key (MOK) that can be used to

sign modules

• Install packages

• Checking if Secure Boot is enabled

• Generate the cert and import
• For some reason the MOK manager interface would not come up after reboot, I ended up having to use the ‘mokutil --

set-verbosity true’

$ yum install openssl mokutil keyutils

$ openssl req -new -x509 \
 -newkey rsa:2048 -keyout /root/openafs.key \
 -outform DER -out /root/openafs.der \
 -nodes -days 36500 -subj "/CN=OpenAFS Kmod Signing MOK"

$ mokutil --set-verbosity true

$ mokutil --import /root/openafs.der

$ reboot

$ mokutil --sb-state
SecureBoot enabled

5

Manually signing
• Next up, getting the dkms module to use the self-signed key

• For some reason dkms was not reading the SIGN_TOOL directive from the
/etc/dkms/<module>.conf, I’ve read a few posts now that state that has been
restricted to the /etc/dkms/framework.conf

• Just to do the initial validation I was able to unxz the /lib/modules/$(uname
–r)/extra/openafs.ko.xz and manually run the script to sign it

• After that I re-xz’d the file and was able to insmod it successfully! So yes, we can self-
sign and load!

$ /usr/src/kernels/$(uname -r)/scripts/sign-file sha256 /root/openafs.key /root/openafs.der /lib/modules/$(uname
–r)/extra/openafs.ko

6

Automating the signing
• Continuing on with trying to automate the process

• I noticed that the dkms build itself referenced the following

• Doing some digging and I found that the /etc/dkms/framework.conf has

• I dropped a custom.conf under /etc/dkms/framework.conf.d to set those values to the custom self-
signed key

• And that worked, the caveat being that it is used for all dkms modules, not just OpenAFS, but I
suspect we would only deploy a single custom dkms key/cert anyways, so that should be fine.

• Doing some additional searches and I found that the /var/lib/dkms/mok.pub can be imported

• So I did that and voila! That worked as well!

Signing key: /var/lib/dkms/mok.key
Public certificate (MOK): /var/lib/dkms/mok.pub

mok_signing_key=/var/lib/dkms/mok.key
mok_certificate=/var/lib/dkms/mok.pub

mok_signing_key=/root/openafs.key
mok_certificate=/root/openafs.der

$ mokutil --set-verbosity true
$ mokutil --import /var/lib/dkms/mok.pub
$ reboot

7

Next steps
• Proof of concept wise, being able to self-sign an OpenAFS dkms built kernel module

and load it in a Secure Boot environment is definitely doable

• The biggest hurdle is the import of the cert, having to reboot and enter the MOK
manager on each host does not scale

• Investigate additional tools/utilities/flows
• efi-updatevar – sounds very manual, but had the concept of delete all the keys and reload
• certmule – appears to allow for the unattended enrollment of keys into the MOK, but requires a system owner key in

the UEFI secure boot DB
• redfish - use redfish to clear the keys, then the system is in "setup" mode for Secure Boot and then re-enroll all the

keys starting with our own custom one as the Platform Key (PK) from the OS (in theory)

• Having discussions with various HW vendors
• Can they support custom key enrollment before shipment?
• How about key rotations?
• Firmware updates?
• Security policies to protect our keys?

• Obtain a “blessed” key to sign the module?

8

Links
• These were some helpful links discovered along the way

• https://gist.github.com/lijikun/22be09ec9b178e745758a29c7a147cc9 – Example of signing dkms nvidia drivers in
secure boot

• https://github.com/dell/dkms#secure-boot – MOK overview as well as the import of the dkms mok.pub
• https://blogs.oracle.com/linux/post/the-machine-keyring - certmule example
• https://sysguides.com/fedora-uefi-secure-boot-with-custom-keys/ - lots of good details
• https://redfishforum.com/thread/572/install-certificate-secure-boot - redfish examples
• https://docplayer.net/151198843-Secureboot-certificate-management-by-using-redfish.html - more redfish examples

https://gist.github.com/lijikun/22be09ec9b178e745758a29c7a147cc9
https://github.com/dell/dkms#secure-boot
https://blogs.oracle.com/linux/post/the-machine-keyring
https://sysguides.com/fedora-uefi-secure-boot-with-custom-keys/
https://redfishforum.com/thread/572/install-certificate-secure-boot
https://docplayer.net/151198843-Secureboot-certificate-management-by-using-redfish.html

Follow us on:

For more information, visit us at:

qualcomm.com & qualcomm.com/blog

Thank you
Nothing in these materials is an offer to sell any of the components
or devices referenced herein.

© Qualcomm Technologies, Inc. and/or its affiliated
companies. All Rights Reserved.

Qualcomm is a trademark or registered trademark of Qualcomm
Incorporated. Other products and brand names may be
trademarks
or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm
Incorporated,
Qualcomm Technologies, Inc., and/or other subsidiaries or business units
within
the Qualcomm corporate structure, as applicable. Qualcomm Incorporated
includes our licensing business, QTL, and the vast majority of our patent
portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm
Incorporated, operates, along with its subsidiaries, substantially all of our
engineering, research and development functions, and substantially all of
our products and services businesses, including our QCT semiconductor
business.

Snapdragon and Qualcomm branded products are products of Qualcomm
Technologies, Inc. and/or its subsidiaries. Qualcomm patented technologies
are licensed by Qualcomm Incorporated.

