
Flexible AFS Backup System

Ralf Brunckhorst
Sine Nomine Associates

2022 AFS Technologies Workshop

Introduction
• Free software project to integrate OpenAFS file-servers with an existing

backup scheme.
• Is a set of tools and daemons to help backup AFS cells
• Make any backup system OpenAFS compatible (without the need of a

plugin)
• Layer between OpenAFS-data and backup system (e.g. Netbackup)

which decouple the "get data from AFS" handling from the "store long-
term backup data" handling.

• AFS data handling is more ‚flexible‘
• Dumping volume blobs to regular files on disk.
• Regular backup system handle backing up those regular files (e.g. to

tape).
• Has been used in production at a large OpenAFS site for several years.

Overview

• FABS is written in Python (python-3)
• It uses a few libraries which are easily obtainable in familiar Linux

distributions as packages
• Packaging exists for RPM and Debian/Ubuntu packages
• Tested on RHEL7+8 (derivatives incl.), Debian11, Ubuntu20+22 and

Fedora35+
• Installation on other Linux/Unix distributions which support python-3

should be possible (e.q. Solaris11)
• Deployed in production on RHEL7 and Debian11

Technical Details

• Runs on a single machine per cell
• Has a single server daemon that is used for

– orchestrating backup runs
– checking for errors, sending reports, etc
– intended to run under bosserver

• Runs "vos dump" and "vos restore" commands directly from that machine
Note: Only full dump supported

• FABS jobs are scheduled and will be picked up by the “fabsys server”
process

• Idempotent retriable steps
– Operations like performing backups and restores happen in a sequence of retriable 'states'.

If something fails in the middle of a backup or restore operation, the operation can be
rolled back to a known-good point and retried.

– If an operation fails too many times, we stop retrying it and instead generate an alert

Technical Details (cont.)

• Records various volume metadata and VLDB info at the time of the
backup

• Configuration of FABS is in YAML
Edit or add new files in /etc/fabs/fabs.yaml.d/

• Configurable hooks for certain actions available which are just
commands/scripts.
Examples (Shell + Perl) included in /etc/fabs/hooks/

• No mechanism for scheduling backups, instead run FABS backup-
command(s) via cron or bosserver.

• A krb5 keytab for authenticated access to the cell for full functionality.
– k5start is used for those accesses
– ‘localauth’-mode possible but not recommended

• OpenAFS-client running and operational
• dumpscan
• A SQL database (supported by Python‘s SQLAlchemy)

– Supported and tested: SQLite and MySQL / MariaDB
– Default: SQLite database on local disk on the fabs server
– Might work: Postgresql, Oracle and MS-SQL
– Other dialects are published as external SQLAlchemy projects

• A storage directory for use as FABS blob storage
– can have multiple directories
– will distribute volume data across them relatively evenly
– will failover to other storage directories if one is not functioning properly

Requirements

Interface (CLI)
• Only one main-command: fabsys
• Detailed man-pages for fabsys and each subcommand
• Output can also be in a machine-readable JSON format
• Subcommands available for different areas like:

– Daemon
– Configuration
– Database initialization and maintenance
– Backups
– Dump handling
– Restores
– Job handling

• Status
• Retry
• Kill

Workflow
• Using FABS to dump volume blobs to path (FABS storage) on local file-system according to

various configuration directives and other information (e.g. whether a volume has changed
since the last dump)
_> fabsys backup-start -–all –-note ‘daily backup-job’

• Using a Backup system to backup the contents on file-system to tape
• Currently, the general scheme in mind for limiting space in the blob storage directory

– is to keep only the most recent copy of a volume around
– delete all other copies from disk (FABS storage can be trimmed by specific maintenance command)

>_ fabsys storage-trim (examine output and delete from file-system)
– keeping them around on tape

• In case of a restore request:
– Find which backup of it you want to restore by volume name or path and other criteria

>_ fabsys dump-find --path /afs/cell/user/username --near 1438491600 --admin
– Restore the specific volume dump

>_ fabsys restore-start --dump-id 6 –admin
– If the needed dump is only on ‘tape’, FABS will run a script that can do a notification and interaction with

the Backup system to get the needed dump.
– Data will be restored to a staging location (shown by the status command)

>_ fabsys restore-status
– After a certain amount of time (configurable, defaults to 1 week), the staging data will be removed, and

the restore request will be marked as done.

FABSYS subcommands

Examples: Backup

Examples: Restore

Example: storage trim in JSON format

Examples: Storage & Dump maintenance

Recap

Database

FABS
Daemon

KRB5
Keytab

FABS
CLI

AFS Cell

Fileserver B
Flexible AFS

Backup Solution

FABS
System

AFS
Client

FABS
Storage

Regular
Backup
Solution

fabsys subcommand
FABS

Configuration
& Hooks

Fileserver A

Links

• FABS: https://github.com/openafs-contrib/fabs
FABS has recently become publicly available.

• dumpscan: https://github.com/openafs-contrib/cmu-dumpscan

https://github.com/openafs-contrib/fabs
https://github.com/openafs-contrib/cmu-dumpscan

Thank You!

