
Introducing a common interface to 
access AFS statistics

Marcio Barbosa
2019 OpenAFS Workshop



AGENDA

Motivation

Problem

Solution

StatsStore

StatsStore and OpenAFS

Other platforms

Collectd

Collectd and OpenAFS

Links



MOTIVATION

• Plenty of reasons why collecting stats about your system is a good idea;
– Troubleshooting;
– Tracking down bottlenecks;
– Analyzing long-term trends;
– Measure and monitor application performance;
– Identify ways to optimize performance;
– Others;



PROBLEM

• Different interfaces to get stats from different components of the system;
• Getting stats from one component of your system might not be enough;

– Unable to correlate data from various applications;
– Unable to connect events to certain system states;

• Difficulties to build a holistic view of the circumstances surrounding an event;

Component 
1

Command-line 
interface 1

Component 
2

Command-line 
interface 2

Component 
3

Command-line 
interface 3

Component 
4

Command-line 
interface 4



PROBLEM

• Tracking data about the system as a whole could:
– Bring together apparently disparate pieces of system data;
– Help us understand what the environment looked like exactly at the time of the problem;

• See our system as a system, instead of as a loose set of unrelated 
components;

• Unfortunately, each component provides statistics in a different way;

Component 
1

Component 
4

Component 
2

Component 
3



PROBLEM

Component 
1

Command-line 
interface 1

Component 
2

Command-line 
interface 2

Component 
3

Command-line 
interface 3

Component 
4

Command-line 
interface 4

Process



SOLUTION

• A common namespace to access performance data from a variety of system 
sources;

• Ideally, same command-line interface and API;
• A shared namespace across statistics enables you to easily explore all available 

information for a given system;



SOLUTION

Component 
1

Command-line 
interface

Component 
2

Component 
3

Component 
4



STATSSTORE

• Introduced in Oracle Solaris 11.4;
• StatsStore unifies the broad set of Oracle Solaris observability technologies under 

one set of naming rules;
• This consolidated view of data is available through the interactive System Web 

Interface and through CLIs and APIs;



STATSSTORE

• Create metadata files that define your statistics;
• Modify your application to update values for the statistics that you created in 

metadata;
• Interfaces are available for both C and Python;
• Interface creates a shared memory region between sstored and the client process;

– Supports only integer statistic values;
– Values in this shared memory region are initialized to 0;
– To update the statistics store, update the shared memory region array element for that statistic;



STATSSTORE

component

sstore lib

sstore

metadata

Shared-memory region

atomic_increment(stats); atomic_read(stats);

sstore_data_attach(stats);



STATSSTORE AND OPENAFS

• Different ways to get statistics from different processes;
– Different command-line interfaces;
– Signals;
– Fileserver, VL server, PT server, Volume server, etc.;

• Different ways to get statistics from the same process;

vlserver

ubik

rx

Command-line interface 1

Command-line interface 2

Command-line interface 3



STATSSTORE AND OPENAFS

• Code refactoring:
– Move related stats to the same struct;
– Use stats store library to create shared memory region for each struct;
– Update counters normally;

vlserver

ubik

rx

sstore



STATSSTORE AND OPENAFS



OTHER PLATFORMS

• StatsStore is Solaris specific;
• Alternative for Linux;

– Collectd;

• Collectd is an open source daemon that collects system and application 
performance metrics;

• Collects, transfers and stores system performance statistics;
– Data acquisition and storage handled by plugins;



COLLECTD



COLLECTD

• Benefits:
– Open source;
– Extensible;
– Free;
– Lightweight;
– Lots of plugins (over 130 plugins);
– Widely supported (Linux, Mac OS X, AIX, FreeBSD, NetBSD, OpenBSD, etc.);
– More;



COLLECTD

• Everything in collectd is done in plugins;
• Each plugin has their own unique settings;
• Plugin for OpenAFS developed;

– Creates shared-memory region for each group of stats;
– Group of stats specified in the configuration file;

OpenAFS 
Server Collectd

OpenAFS 
Plugin

Configuration 
File

Shared-memory region



COLLECTD AND OPENAFS

• OpenAFS uses the same interface used by StatsStore;
– But with different implementation;
– Collectd plugin: github.com/marciobarbosa/collectd/tree/mbarbosa/afs-stats-3

server

stats_init()

statsstore collectd

Shared-memory region Shared-memory region

sstore collectd



COLLECTD AND OPENAFS



Thank you!


