
Overcoming Ubik Limitations

Marcio Barbosa
2019 OpenAFS Workshop



AGENDA

Election

Recovery

Limitations

Reads-during-sync

Transactions

Read-transaction

Write-transaction

Limitations

Reads-during-commit

Other fixes



ELECTION



ELECTION

• A coordinator is elected by sending out beacon packets;
• A beacon implicitly asks the recipient to vote for the sender;
• Site with more votes is elected the synchronization-site;
• Coordinator will periodically attempt to extend its mandate;
• Voter that replied positively will not vote for another site before a timeframe;

VLSERVER

UBIK

HOST 1 HOST 2 HOST 3 HOST N



ELECTION: OVERVIEW

Can you give me your vote?

Can you give me your vote?

Can you give me your vote?

Can you give me your vote? Can
 yo

u g
ive

 m
e y

ou
r v

ote
?

Can
 yo

u 
giv

e 
me 

yo
ur

 vo
te

?



ELECTION: OVERVIEW

No. Sorry.

No. Sorry.

Yes!
No. Sorry. Ye

s!
No.

 S
or

ry.

Voting for myself



RECOVERY



RECOVERY

• Recovery procedure is executed immediately after becoming sync-site:
– Sync-site contacts all servers and determines the latest version;
– Sync-site updates its local database to the latest version;
– Coordinator relabels the database as the first version during his mandate;
– Sync-site updates all remote databases to the latest version;



RECOVERY: OVERVIEW

What is your database version?

Version (x + 1)

What is your database version?

Version (x)

Version (x)



RECOVERY: OVERVIEW

Give me a copy of your database



RECOVERY: LIMITATIONS

• Read-transactions not allowed;
• Write-transactions not allowed;
• In other words, sites involved are not available during this phase;
• Why? Because the live database is being replaced;
• Current version does not replace the database directly;

– Received database is stored in a temporary file;
– Temporary file replaces live database;



RECOVERY: OVERVIEW

Give me a copy of your database



READS-DURING-SYNC

• Scenario 1: site is sending a copy of the database;
– Local database is not being modified;
– Writes must be blocked;
– There is no reason to block reads;
– Allow reads but block writes;

• Scenario 2: site is receiving a copy of the database;
– Received data is stored in a temporary file;
– Live database will (eventually) be replaced by this temporary file;
– Writes must be blocked;
– Reads can be allowed until the replacement-phase;
– Replacement-phase blocks new reads;
– Replacement-phase aborts read-transactions;



TRANSACTIONS



READ-TRANSACTIONS

• Read-transactions;
– Designed to handle a high number of read transactions;
– Executed by any server in the quorum;
– Can handle multiple read-transactions at the same time;
– Locking is done locally to the server receiving the request;
– Reads data from a database under a transaction;
– The parameters to read are a transaction, a buffer and a length;
– It functions like the Unix read system call;
– Reads length bytes from the current file position into the specified buffer;



READ-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = read)
CreateTransaction(type = read)

GetLock(type = read)

Seek(transaction, offset)

Read(transaction, buffer, length)
Read(buffer, offset, length)

DRead
Read

DataData

EndTransaction(transaction)
Release lock and resources



WRITE-TRANSACTIONS

• Write-transactions;
– Not designed to handle a high number of write transactions;
– Executed by every server in the quorum;
– Can only handle one write-transaction at a specific time;
– Locking is done globally;
– Writes data to a database under a transaction;
– The parameters to write are a transaction, a buffer and a length;
– It functions like the Unix read system call;
– Writes length bytes at the current file position from the specified buffer;



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)



WRITE-TRANSACTIONS (SIMPLIFICATION)

CreateTransaction(type = write)

CreateTransaction(type = write)



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)



WRITE-TRANSACTIONS (SIMPLIFICATION)

GetLock(type = write)

GetLock(type = write)



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite
EndTransaction(transaction)



WRITE-TRANSACTIONS (SIMPLIFICATION)

Write(buffer, offset, length)

Write(buffer, offset, length)



WRITE-TRANSACTIONS (SIMPLIFICATION)

Write(buffer, offset, length)

Write(buffer, offset, length)



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite
EndTransaction(transaction)

Commit(transaction)
Write



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite
EndTransaction(transaction)

Commit(transaction)
Write



WRITE-TRANSACTIONS (SIMPLIFICATION)

Commit(transaction)

Commit(transaction)



WRITE-TRANSACTIONS (SIMPLIFICATION)

Commit(transaction)

Commit(transaction)



WRITE-TRANSACTIONS (SIMPLIFICATION)

ReleaseLock()

ReleaseLock()



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite
EndTransaction(transaction)

Commit(transaction)
Write

ReleaseLock()



WRITE-TRANSACTIONS

• Can be slow (communication cost);
• Read-transactions not allowed during this process;
• Whole cell is blocked;
• How can we alleviate this problem?

– Allowing reads-during-write;



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)



WRITE-TRANSACTIONS (SIMPLIFICATION)

CreateTransaction(type = write)

CreateTransaction(type = write)



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

If we have 
old data, wait

Read-transactions 
read from old data 
from now



WRITE-TRANSACTIONS (SIMPLIFICATION)

GetLock(type = write)

GetLock(type = write)

If we have 
old data, wait

Read-transactions 
read from old data 
from now

If we have 
old data, wait

Read-transactions 
read from old data 
from now



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite

If we have 
old data, wait

Read-transactions 
read from old data 
from now



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite

If we have 
old data, wait

Read-transactions 
read from old data 
from now



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite

If we have 
old data, wait

Read-transactions 
read from old data 
from now



WRITE-TRANSACTIONS (SIMPLIFICATION)

Write(buffer, offset, length)

Write(buffer, offset, length)



WRITE-TRANSACTIONS (SIMPLIFICATION)

Write(buffer, offset, length)

Write(buffer, offset, length)



WRITE-TRANSACTIONS (SIMPLIFICATION)

Write(buffer, offset, length)

Write(buffer, offset, length)



WRITE-TRANSACTIONS (SIMPLIFICATION)

Write(buffer, offset, length)

Write(buffer, offset, length)



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite

If we have 
old data, wait

Read-transactions 
read from old data 
from now

Write

EndTransaction(transaction)
Commit(transaction)



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite

If we have 
old data, wait

Read-transactions 
read from old data 
from now

Write

EndTransaction(transaction)
Commit(transaction)



WRITE-TRANSACTIONS (SIMPLIFICATION)

Write(buffer, offset, length)

Write(buffer, offset, length)



WRITE-TRANSACTIONS (SIMPLIFICATION)

Write(buffer, offset, length)

Write(buffer, offset, length)



WRITE-TRANSACTIONS (SIMPLIFICATION)

ReleaseLock()

ReleaseLock()

If there is no in-flight write 
transaction, and there are 
no transactions looking at 
old pre-write data, flush 
old pages

If there is no in-flight write 
transaction, and there are 
no transactions looking at 
old pre-write data, flush 
old pages



WRITE-TRANSACTIONS (SIMPLIFICATION)

ReleaseLock()

ReleaseLock()

If there is no in-flight write 
transaction, and there are 
no transactions looking at 
old pre-write data, flush 
old pages

If there is no in-flight write 
transaction, and there are 
no transactions looking at 
old pre-write data, flush 
old pages



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite

If we have 
old data, wait

Read-transactions 
read from old data 
from now

Write

EndTransaction(transaction)
Commit(transaction)

ReleaseLock()

If there is no in-flight write 
transaction, and there are 
no transactions looking at 
old pre-write data, flush 
old pages



WRITE-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = write)
CreateTransaction(type = write)

GetLock(type = write)

Seek(transaction, offset)

Write(transaction, buffer, length)
Write(buffer, offset, length)

DWrite

If we have 
old data, wait

Read-transactions 
read from old data 
from now

Write

EndTransaction(transaction)
Commit(transaction)

ReleaseLock()

If there is no in-flight write 
transaction, and there are 
no transactions looking at 
old pre-write data, flush 
old pages



READ-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = read)
CreateTransaction(type = read)

GetLock(type = read)

Seek(transaction, offset)

Read(transaction, buffer, length)
Read(buffer, offset, length)

Read
DataData

EndTransaction(transaction)

Do not get 
any lock

If there is in-flight 
write transaction, 
read from old data

If there is no in-flight write 
transaction, and there are 
no transactions looking at 
old pre-write data, flush 
old pages



READ-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = read)
CreateTransaction(type = read)

GetLock(type = read)

Seek(transaction, offset)

Read(transaction, buffer, length)
Read(buffer, offset, length)

Read
DataData

EndTransaction(transaction)

Do not get 
any lock

If there is in-flight 
write transaction, 
read from old data

If there is no in-flight write 
transaction, and there are 
no transactions looking at 
old pre-write data, flush 
old pages



READ-TRANSACTIONS (SIMPLIFICATION)

VLSERVER UBIK DISK PHYS

BeginTransaction(type = read)
CreateTransaction(type = read)

GetLock(type = read)

Seek(transaction, offset)

Read(transaction, buffer, length)
Read(buffer, offset, length)

Read
DataData

EndTransaction(transaction)

Do not get 
any lock

If there is in-flight 
write transaction, 
read from old data

If there is no in-flight write 
transaction, and there are 
no transactions looking at 
old pre-write data, flush 
old pages



READS-DURING-COMMIT

• Write-transactions do not block read-transactions;
• Read-transactions do not block write-transactions;
• Limitations

– Can not have multiple write-transactions running at the same time;
– New write-transactions are blocked if we still have any read-transaction looking at old data;



PATCHES

• Patches can be found on gerrit;
• Reads-during-recovery;

– Topic: ubik-reads-during-recovery;

• Reads-during-commit;
– Topic: ubik/read-during-commit;



OTHER FIXES



AVOIDING SITES THAT DID NOT 
VOTE FOR SYNC



AVOIDING SITES THAT DID NOT VOTE FOR SYNC

• Remote-sites do not create write-transactions if it didn't vote for the sync-site;
• What happens when the request for a new transaction is refused?

– Sync-site assumes that the remote-site is not "available";



AVOIDING SITES THAT DID NOT VOTE FOR SYNC

Can you give me your vote?

Can you give me your vote?



AVOIDING SITES THAT DID NOT VOTE FOR SYNC

No. Sorry.

Yes!

Voting for myself



AVOIDING SITES THAT DID NOT VOTE FOR SYNC



AVOIDING SITES THAT DID NOT VOTE FOR SYNC

BeginTrans(type = write)

BeginTrans(type = write)

CreateEntry(entry) Did I vote for this site?
Yes!

Did I vote for this site?
No.

Status == fail

Status == success



AVOIDING SITES THAT DID NOT VOTE FOR SYNC

Are you alive?
Yes!



AVOIDING SITES THAT DID NOT VOTE FOR SYNC



AVOIDING SITES THAT DID NOT VOTE FOR SYNC



AVOIDING SITES THAT DID NOT VOTE FOR SYNC

BeginTrans(type = write)

BeginTrans(type = write)

CreateEntry(entry) Did I vote for this site?
Yes!

Did I vote for this site?
No.

Status == fail

Status == success



AVOIDING SITES THAT DID NOT VOTE FOR SYNC

BeginTrans(type = write)CreateEntry(entry)

Status == success



AVOIDING SITES THAT DID NOT VOTE FOR SYNC

GiveMeYourVote(sync_version)

GiveMeYourVote(sync_version)

yes

yes



AVOIDING SITES THAT DID NOT VOTE FOR SYNC



AVOIDING SITES THAT DID NOT VOTE FOR SYNC

BeginTrans(type = write)

BeginTrans(type = write)

CreateEntry(entry) Did I vote for this site?
Yes!

Did I vote for this site?
Yes.

Status == success

Status == success



UPDATE EPOCH AS SOON AS 
SYNC-SITE IS ELECTED



UPDATE EPOCH AS SOON AS SYNC IS ELECTED

• Epoch is global that represents the time in which the sync-site was elected;
• We use this global to differentiate transactions from different mandates;

– Every transaction has an epoch;
– If this epoch is not equal to the epoch advertised by the current sync-site, this transaction should 

be aborted;



UPDATE EPOCH AS SOON AS SYNC IS ELECTED

GiveMeYourVote(sync_version, epoch)

GiveMeYourVote(sync_version, epoch)

yes

yes

Check if we have any 
transaction with an 
trans_epoch != epoch. 
If so, abort this 
transaction.

Check if we have any 
transaction with an 
trans_epoch != epoch. 
If so, abort this 
transaction.



UPDATE EPOCH AS SOON AS SYNC IS ELECTED

No. Sorry.

No. Sorry.

Yes!
No. Sorry. Ye

s!
No.

 S
or

ry.

epoch = 0



UPDATE EPOCH AS SOON AS SYNC IS ELECTED

Commit()

Commit()
Status == success

Status == success
epoch = current_time()



UPDATE EPOCH AS SOON AS SYNC IS ELECTED

No. Sorry.

No. Sorry.

Yes!
No. Sorry. Ye

s!
No.

 S
or

ry.

epoch = 0



UPDATE EPOCH AS SOON AS SYNC IS ELECTED

WriteTrans()

WriteTrans()

CreateEntry(entry)

epoch = 0

Write transaction 
not finished.
[trans_epoch = 0]

Write transaction 
not finished.
[trans_epoch = 0]



UPDATE EPOCH AS SOON AS SYNC IS ELECTED

Can you give me your vote?

Can you give me your vote?

Can you give me your vote?

Can you give me your vote? Can
 yo

u g
ive

 m
e y

ou
r v

ote
?

Can
 yo

u 
giv

e 
me 

yo
ur

 vo
te

?



UPDATE EPOCH AS SOON AS SYNC IS ELECTED

Yes!

No. Sorry.

No. Sorry.
No. Sorry. No. 

So
rry

.
Ye

s!



UPDATE EPOCH AS SOON AS SYNC IS ELECTED

GiveMeYourVote(sync_version, epoch)

Give
MeY

ou
rV

ote
(sy

nc
_v

ers
ion

, e
po

ch
)

Yes
!

Yes!

Check if we have any 
transaction with an 
trans_epoch != epoch. 
If so, abort this 
transaction.

Check if we have any 
transaction with an 
trans_epoch != epoch. 
If so, abort this 
transaction.

epoch = 0

[trans_epoch == epoch]
Transaction from last 
mandate will not be 
aborted!



UPDATE EPOCH AS SOON AS SYNC IS ELECTED

No. Sorry.

No. Sorry.

Yes!
No. Sorry. Ye

s!
No.

 S
or

ry.

epoch = current_time()



Thank you!


