
Intro to Ubik

Mark Vitale
20 June 2019

2019 OpenAFS Workshop

What is ubik?

• A software mechanism for maintaining a replicated distributed
“database”

– Elections
• Establish and maintain a quorum of database servers with a single sync-site

– Locking
• Support distributed whole-file locking

– Commits
• Coordinate distributed, non-blocking atomic commits

– Recovery
• Coordinate distribution of replicated content after disruptions

• Not a true database, but supports simple database-like semantics
– True relational database technology was $$$$ in the 20th century

Ubik design goals

• Available: database replicated among multiple servers for load
sharing and resiliency

• Atomic: no partial or incomplete commits seen by users
• Non-blocking: allow reads and writes during network partitions or

single-server outages – even a sync-site outage (unlike two-phase
commit)

• Consistent: automatic distributed updates; automatic recovery from
crashes and failed commits

• Simple: apps should be able to use a replicated, transactional server
as easily as a traditional Unix file on a single-site Unix server.

Ubik limitations (K.I.S.S)

• Only one write transaction at a time
– Simplifies logging and recovery

• No reads during write
• No deadlock detection or protection

– Application writer is responsible for consistent lock order

• S.L.O.W.
– Write latency is proportional to the sum of the RTTs from sync-

site to each non-sync site
– Synchronization (although rare) is … synchronous and serial

OpenAFS ubik (“DB”) servers

• vlserver Volume Location server
• ptserver Protection server
• buserver Backup server
• kaserver Kerberos 4 KDC - obsolete

Components

• Rx stack
– Listener thread
– Event thread (pthread only)
– IOMGR thread (LWP only)

• Beacon thread (ubeacon_Interact)
• Recovery thread (urecovery_Interact)
• VOTE_* RPC service threads
• DISK_* RPC service threads
• Ubik disk buffer package

Ubik server roles

• Sync-site (“master”)
• Non-sync site (“clone”)
• Non-voting clone site

Role: sync-site

• Determined by winning an election
– OR being the sole configured voting DB server

• Default sync-site is the DB server with the lowest IP
address
– Implemented by giving an extra vote to default server

• Accepts both reads and writes
• Coordinates

– Elections
– Writes and commits
– DB version synchronization

Role: non-sync site

• Determined by losing an election and/or voting for
someone else

• Will not vote for another for BIGTIME 75s
• May be elected sync-site in case of sync-site failure (crash,

outage, network partition, etc.)
• Accepts only reads; writes fail with UNOTSYNC

Role: non-voting clone

• Specified by square brackets in cell configuration:
– bos addhost <server> [clonedb]
– [cloned_ip] #cloned_host (in CellServDB)

• “Non-voting” is a misnomer – they vote, but their votes don’t count!
• Can never be elected sync-site *
• Accepts only reads; writes fail with UNOTSYNC
• Provides a local database copy for remote locations
• Elections unaffected by network delays
• Network latency still counts for updates and synchronization

Election (beacon thread)

• Sync-site (or a wannabe) sends VOTE_Beacon to each server in CellServDB
using multi_Rx

– State=1 if sync-site, 0 if wannabe
• VOTE_Beacon reply:

– 0 NO
– <epoch> YES, and this is my local time

» NOTE: Because Rx sees this as a non-zero return code, the reply is
sent as an RX_PACKET_TYPE_ABORT

• Tally:
– YES from a “non-voting” clone doesn’t count
– YES from a voting clone counts for 2 votes
– YES for self counts for 2 votes
– YES from the lowest IP address counts 1 extra vote

• Results: if tally > number of servers, YOU WIN

Ubik election time constants

constant value
(s)

semantics

BIGTIME 75 each site MUST promise to vote for only one sync-site
within BIGTIME interval; time to wait before presuming
death of other server(s)

SMALLTIME 60 successful election term limit; a sync-site will resign
when the last votes received are older than this

MAXSKEW 10 allowance for clock skew between DB servers; Implicit
requirement for shared timebase

POLLTIME 15 period for elections (VOTE_Beacon requests) from sync-
site (or wannabe)

RPCTIMEOUT 20 Time for VOTE_Beacon RPC timeout (original
implementation – current default timeout is 12s)

Ubik election invariants

• To ensure that only one site can be elected sync-
site at a time, the election constants must obey
these invariant relations:
– BIGTIME > SMALLTIME
– BIGTIME – SMALLTIME > MAXSKEW
– SMALLTIME > RPCTIMEOUT + max(RPCTIMEOUT,

POLLTIME)
– BIGTIME > RPCTIMEOUT + max(RPCTIMEOUT,

POLLTIME)

Quorum

• “quorum” is the minimum number of votes required to
elect a sync-site.

• therefore, if a sync-site has been elected, we have
quorum

• this is true EVEN if not all members of the quorum have
the current DB yet

• reads require NEITHER quorum NOR current DB version
• writes require BOTH quorum AND current DB version

Synchonization (recovery thread)

• Maintains state of connections to other servers
(all roles)
– Every 30s, send DISK_Probe to any ”down” servers to

reestablish contact

• Ensures that all sites have the same version of the
database (sync-site only)
– Every 4s, check recovery state; as needed, find latest

version of database (DISK_GetVersion) and propagate
it (DISK_GetFile, DISK_SendFile – NOT MULTI!)

Recovery state

• All states reflect sync-site’s viewpoint
• UBIK_RECSYNCSITE 0x01 I am sync site
• UBIK_RECFOUNDDB 0x02 I know the best DB version
• UBIK_RECHAVEDB 0x04 I have a local copy of best DB version
• UBIK_RECLABELDB 0x08 I did first write commit to DB
• UBIK_RECSENTDB 0x10 I have sent best DB to everyone
• udebug to the sync-site to examine the current recovery state

– 0x1f Normal
– 0x17 Normal after new DB, before first write

udebug utility

• Useful for determining sync-site,
diagnosing quorum issues:
– udebug <server> <port>

• Specify the -long option to a non-sync
server in order to obtain some additional
information about the other servers
(implicit default for sync-site)

Best practices

• Avoid connecting voting servers over (slow, relatively
unreliable) WAN links.

• Consider non-voting clones

• Use an odd integer for quorum set size.
• Use non-voting clones if you need an even number

• Make backup copies of your databases.
• bos stop does _not_ shutdown ubik servers gracefully (no signal

handlers)

• Run prdb_check and vldb_check occasionally.
• The udebug utility is valuable for checking configuration

and operation.

Further reading

• By Michael Leon Kazar:
– Quorum Completion

• CMU ITCID, Pittsburgh, PA, 1988
– Ubik – A Library for Managing Ubiquitous Data

• CMU ITCID, Pittsburgh, PA, 1988
– Ubik: Replicated Servers Made Easy

• IEEE Proc. of the Second Workshop on Workstation Operating Systems, pages
60–67, September 1989

• By Jeff Hutzelman:
– Ubik threading analysis

• https://lists.openafs.org/pipermail/openafs-devel/2011-
February/018329.html

• OpenAFS source tree: doc/txt/ubik.txt

This slide intentionally left blank

