
© Copyright IBM Corporation 2019
Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of IBM.

Yadavendra Yadav
Todd DeSantis

Debugging Tools for OpenAFS Linux
Cache Manager

© Copyright IBM Corporation 2019

Agenda

2

 SystemTap

 Ftrace

 Perf probe

 OpenAFS Crash Plugin

© Copyright IBM Corporation 2019

SystemTap

3

 SystemTap provides free software (GPL) infrastructure to simplify the gathering of
information about the running Linux system.

 It is based on kprobes / kretprobe.

 Eliminates the tedious and disruptive process of instrumentation, recompile, install,
and reboot sequence that may be otherwise required to collect data.

 Provides a simple command line interface and scripting language for writing
instrumentation for a live running kernel.

© Copyright IBM Corporation 2019

SystemTap Architecture

4

SystemTap Processing Steps:

© Copyright IBM Corporation 2019

Advantages of SystemTap

5

 No module writing required. Create and insert probes quickly and easily using a simple
scripting language.

 No kprobes knowledge required

 No kernel addresses required. Automates gathering of symbol information

 Provides pre-written probes for common kernel areas

 Growing set of pre-written scripts

 Powerful and simple to use

© Copyright IBM Corporation 2019

Case Study-1

6

Problem Statement: Getting -450 (RX Marshal Error) while doing FetchStatus Calls.
While we get -450 error, there were tokens expiry messages in syslog files.

Initial Analysis: Since there were token expiry messages, we wanted to inject a fault in
routines which return RXKADEXPIRED error.

Wrote below script which returns RXKADEXPIRED error from rxkad_PreparePacket.
With this we were able to simulate the issue while executing status calls.

Script

probe module("openafs").function("rxkad_PreparePacket").return
{
 printf("Going to return RXKADEXPIRED\n")
 $return = 19270409

}

© Copyright IBM Corporation 2019

Case Study-2

7

Problem Statement : We were getting RX_PROTOCOL_ERROR while doing
FetchStatus calls.

Initial Analysis:

Step 1: First we needed to find from which place in RX Layer RX_PROTOCOL_ERROR
is returned. For that we wrote systemTap script to put probes at all points where
RX_PROTOCOL_ERROR was returned.

Script

probe module("openafs").statement("*@*/rx.c:3108") {
printf("Hit probe at 3108 : %s####CallNum[%d] Iter[%d]\n",$$vars, callNum, iter)
}

probe module("openafs").statement("*@*/rx.c:3516") {
 printf("Looks we have hit RX_PROTOCOL_ERROR [Process Data %s %d %s]
[Probe Data %s:%s]\n",execname(), pid(), pp(), probefunc(),$$vars)
}
…

© Copyright IBM Corporation 2019

Case Study-2 (cont…)

8

 Step 2: After running systemTap script we came to know the place from where
 RX_PROTOCOL_ERROR was returned.

 Step 3: With our debug data we came to know that while sending data packet call number
 is 0.

 Step 4: So we simulated the problem by making call Number as 0 in our systemTap script.
 This also served as our Unit test case.

 Script:

 probe module("openafs").statement("*@*/rx.c:3108") {
 header = &@cast($np, "rx_packet", "*openafs*")->header

 callNum = @cast(header, "rx_header", "*openafs*")->callNumber
 if (iter == 1) {

type = @cast(header, "rx_header", "*openafs*")->type
 if (type == 1)

 @cast(header, "rx_header", "*openafs*")->callNumber = 0 }

© Copyright IBM Corporation 2019

Performance Measurement

9

 SystemTap can used to gather performance statistics
o Script

o Output

© Copyright IBM Corporation 2019

Ftrace

10

 Ftrace is an internal tracer designed to help out developers and designers of
systems to find what is going on inside the kernel.

 It can be used for debugging or analyzing latencies and performance issues

 There are multiple options with ftrace like trace function, function graph etc

 Use gprof hooks. Add mcount() call at entry of each function call

 Require kernel to be compiled with –pg option

 During compilation mcount call sites are recorded

 Convert mcount() call to NOP at boot time.

© Copyright IBM Corporation 2019

Ftrace

11

© Copyright IBM Corporation 2019

Setting up Ftrace

12

 Currently the API to interface with Ftrace is located in the Debugfs file system.
Typically, that is mounted at /sys/kernel/debug.

 When Ftrace is configured, it will create its own directory called tracing within the
Debugfs file system.

 For the purpose of debugging, the kernel configuration parameters that should be
enabled are:

CONFIG_FUNCTION_TRACER CONFIG_FUNCTION_GRAPH_TRACER
CONFIG_STACK_TRACER CONFIG_DYNAMIC_FTRACE

© Copyright IBM Corporation 2019

Running Ftrace

13

 After mounting tracefs you will have access to the control and output files of
ftrace. Here is a list of some of the key files:

 current_tracer
 available_tracers
 tracing_on
 trace
 set_ftrace_filter
 set_ftrace_notrace
 set_ftrace_pid
 enabled_functions
 Trace

 Starting & stopping Ftrace:

Start :
[tracing]# echo 1 > tracing_on

Stop :
[tracing]# echo 0> tracing_on

© Copyright IBM Corporation 2019

Function Tracer

14

© Copyright IBM Corporation 2019

Function Tracer (cont)

15

Demo

© Copyright IBM Corporation 2019

Function Tracer (cont)

16

© Copyright IBM Corporation 2019

Function Graph Tracer

17

© Copyright IBM Corporation 2019

Process Tracer

18

© Copyright IBM Corporation 2019

trace_printk()

19

 If you are debugging a high volume area printk() can bring lots of latency

 Ftrace introduces a new form of printk() called trace_printk().

 Trace_printk does not output to console instead it writes data to ftrace ring buffer

© Copyright IBM Corporation 2019

Fetch Kernel Data when Application fails

20

 The tracing_on and trace_marker files work very well to trace the activities of an
application if the source of the application is available. .

 Critical region starts : Write to trace marker stating “critical region started”
 Some call fails : Turn of tracing so that we get trace logs before issue happened.

© Copyright IBM Corporation 2019

Stack Tracing

21

© Copyright IBM Corporation 2019

Perf probe

22

 Allows dynamic trace points to be added or removed inside the Linux kernel

 Besides instrumenting locations in the code, a trace point can also fetch
values from local variables, global, registers, the stack, or memory

 Based on kprobe and kretprobe

 Can be used to trace user space also using Uprobes

© Copyright IBM Corporation 2019

Perf probe (Cont)

23

© Copyright IBM Corporation 2019

Perf probe (Cont)

24

© Copyright IBM Corporation 2019

Perf probe (Cont)

25

© Copyright IBM Corporation 2019

OpenAFS Crash Plugin

26

What is crash ?

Is the combination of kernel-specific traditional
UNIX crash utility with the source code level debugging
capabilities of gdb.

We have implemented crash plugin for Distributed Filesystem
like OpenAFS to fetch information from Kernel dumps and
Live kernel.

What are the Challenges?

 Displaying various Data structures from OpenAFS kernel
 dump is a cumbersome process.

 Assembling kernel data to identify issue is time
 consuming process.

 To avoid above issue we have written a “Crash” Plugin for OpenAFS.

Extension

Crash

Memory
Dump

© Copyright IBM Corporation 2019

OpenAFS Crash Plugin Architecture

27

START
crash>openafs -d

Get structure address using
 symbol_value crash macro

Read structure memory Value using
offset & size with readmem macro.

Search member of the structure in
hash table with its hash index.

Is structure
member

entry found
?

YES

NO

Update the structure
with member offset and

size using crash macros.

Add member structure
 in Hash table

Return structure's member
info. Like offset & size

END
Display structure member Value

© Copyright IBM Corporation 2019

OpenAFS Crash Plugin Benefits and Macros used

28

Benefits:

 In cloud environment, user can easily identify reason for kernel slowdown/panic with
live kernel debugging using crash plugin.

 User can get kernel structure info. with single command.

 Crash" Plugin can also be used to log in-memory kernel information when some
unexpected event happens (Log collection)

Crash plugin Macro used:

 Address of a Structure : “Crash” Utility API "symbol_value" is used

 Offset of a Member inside a Structure : “Crash” Utility Macro
"MEMBER_OFFSET" is used.

 Size of a Structure Member : “Crash” Utility Macro "MEMBER_SIZE" is used

 Type of a Structure Member : “Crash” Utility Macro "MEMBER_TYPE" is used

© Copyright IBM Corporation 2019 29

© Copyright IBM Corporation 2019 30

Thank You

