
© Copyright IBM Corporation 2015

Technical University/Symposia materials may not be reproduced in whole or in part without the prior written permission of IBM.

Yadavendra Yadav

Prashant Sodhiya

SystemTap For Runtime Analysis of

Kernel Modules such as AFS

© Copyright IBM Corporation 2015

Agenda

1

� Introduction

� Architecture

� Advantages of SystemTap

� Using SystemTap

� SystemTap Language

� Introduction & Examples of Tapsets

� Tapsets for OpenAFS

� SystemTap Usage in AFS

� Case Studies

� Performance Measurement

© Copyright IBM Corporation 2015

Introduction

2

� SystemTap provides free software (GPL) infrastructure to simplify the gathering of

information about the running Linux system.

� It is based on kprobes / kretprobe.

� Eliminates the tedious and disruptive process of instrumentation, recompile, install,

and reboot sequence that may be otherwise required to collect data.

� Provides a simple command line interface and scripting language for writing

instrumentation for a live running kernel.

© Copyright IBM Corporation 2015

Introduction (cont..)

3

SystemTap Target Audience:

� Kernel Developer: I wish I could add debug statements easily without going

through the insert / build / reboot cycle.

� Technical Support: How can I get additional data out of a customer's kernel

easily and safely ?

� System Admin: Occasionally jobs take significantly longer than usual to

complete, or do not complete. Why ?

� Student: How can I learn more about the call flow of a kernel subsystem ?

© Copyright IBM Corporation 2015

Architecture

4

o System tap uses Kprobes / Kretprobe for dynamic probing.

o Kprobes requires that you:

� Write a kernel module.

� Specify an address and handler for each probe point.

� Be careful ! Mistakes can crash the system.

� Powerful, but cumbersome to use.

© Copyright IBM Corporation 2015

Architecture (cont…)

5

SystemTap Processing Steps:

© Copyright IBM Corporation 2015

Advantages of SystemTap

6

� No module writing required. Create and insert probes quickly and easily using a simple

scripting language.

� No kprobes knowledge required.

� No kernel addresses required. Automates gathering of symbol information.

� Provides pre-written probes for common kernel areas.

� Growing set of pre-written scripts.

� Powerful and simple to use.

© Copyright IBM Corporation 2015

Using SystemTap

7

Installation & Setup

To deploy SystemTap, install the following RPMs

� Systemtap

� Systemtap-runtime

Installing requires Kernel Information RPM

� Kernel-debuginfo

� kernel-debuginfo-common-arch

� kernel-devel

� For probing OpenAFS we need to install openafs-debuginfo

package.

© Copyright IBM Corporation 2015

Using SystemTap (cont…)

8

Verifying Installation

stap -v -e 'probe vfs.read {printf("read performed\n"); exit()}'.

© Copyright IBM Corporation 2015

Using SystemTap (cont…)

9

System Tap Command

stap [options] script.stp

* See stap(5) man page for complete list and details

Option Description

-v Increase verbosity

-g Guru mode, embedded C allowed

-k Keep temporary directory

-m Set probe module name

-x Sets target() to PID

-c Start probes, run command , exit when it finishes

-r Cross-compile to kernel RELEASE

© Copyright IBM Corporation 2015

Using SystemTap (cont…)

10

Cross Instrumentation

� Production environment will not have development & debuginfo packages. So

how to run systemtap there ?

� All kernel development & debuginfo packages can be installed on a single host

machine.

� On host machine below command will provide kernel module (e.g. file_op.ko)

stap -r `uname -r` file_op.stp -m file_op -p4

� Target system only one RPM needs to be installed i.e. systemtap-runtime.

� On target systems run

staprun <kernel module>

© Copyright IBM Corporation 2015

Using SystemTap (cont…)

11

Required Privileges

� Running stap and staprun requires elevated privileges to the system

� To allow ordinary users to run SystemTap without root access, add them to both

of these user groups

1. stapdev

Members of this group can use stap to run SystemTap scripts, or

staprun to run SystemTap instrumentation modules.

2. stapusr

Members of this group can only use staprun to run SystemTap

instrumentation modules

© Copyright IBM Corporation 2015

SystemTap Language

12

� Probes & Probe Aliases – function entry & exit, source line

� kernel address, timer, begin/end

� Wildcarding

� Functions

� Types – string, 64-bit long, associative array, aggregation

� Comparison – if else & ternary operators

� Looping - while, for, foreach

� Usual binary & numeric operators

� String manipulation – sprint, sprintf, . & .= operators

� Output – log, print, printf

� Target variables – accessible with ‘$’ prefix

� Embedded C – raw C code, not covered by safety checks

© Copyright IBM Corporation 2015

Introduction of Tapsets

13

� Probe set that encapsulates kernel subsystem knowledge. Defines probes, data,

auxiliary functions.

� Abstracts away subsystem implementation details.

� Probes are usable and extendable by other scripts.

� Tested and packaged with SystemTap.

� Located in either:

� /usr/local/share/systemtap/tapset if installed from source

� /usr/share/systemtap/tapset if installed from rpm

© Copyright IBM Corporation 2015

Example of Tapsets

14

VFS tapset

© Copyright IBM Corporation 2015

Tapsets for OpenAFS

15

Sample Tapset Routines:

o AfsLockInfo

o GetVFid

o PrintVcache

o PrintDcache

o …..

© Copyright IBM Corporation 2015

Tapsets for OpenAFS (cont…)

16

Tapset Routines

© Copyright IBM Corporation 2015

Tapsets for OpenAFS (cont…)

17

Tapset Routines

© Copyright IBM Corporation 2015

SystemTap Usage in AFS

18

� Defect Analysis and simulation

� Defect Testing

� Fault Injection

� Performance

� Tapset

© Copyright IBM Corporation 2015

Case Study-1

19

Problem Statement: User application returned EIO error during msync operation.

Initial Analysis : Need to find which AFS function is failing & how EIO is returned back

to a application.

STEP 1: Find which AFS function is failing

o Script

© Copyright IBM Corporation 2015

Case Study-1 (cont…)

20

Statistics of Functions Return Value

o Output

© Copyright IBM Corporation 2015

Case Study-1 (cont…)

21

STEP 2: Stack Trace of the failing AFS function

o Script

o Output

© Copyright IBM Corporation 2015

Case Study-1 (cont…)

22

STEP 3: Which function is returning EIO error

o Script

o Output

© Copyright IBM Corporation 2015

Case Study-2

23

Problem Statement : Dcache readlock leak in case “afs_dir_GetVerifiedBlob” fails

inside “afs_linux_readdir”.

o Mainly afs_PutDcache was called without releasing a readlock

Simulation: To simulate this defect “afs_dir_GetVerifiedBlob” should fail. For this we

used SystemTap as a fault injection mechanism.

o Script

© Copyright IBM Corporation 2015

Case Study-2 (cont…)

24

� With above fault-injection we were able to test the fix.

� To verify that there is no such lock leak in other places, we added probe during return of

“afs_PutDCache” which checks for lock leak.

© Copyright IBM Corporation 2015

Performance Measurement

25

SystemTap can used to gather performance statistics

o Script

o Output

© Copyright IBM Corporation 2015

References

26

� http://sourceware.org/systemtap/examples

� https://access.redhat.com/documentation/enUS/Red_Hat_Enterprise_Linux/6/html/

SystemTap_Beginners_Guide/

� http://sourceware.org/systemtap/wiki/

© Copyright IBM Corporation 2015 27

