
The Road to IPv6
Simon Wilkinson (Your File System Ltd)

The Problem

• Protocol issues

• Configuration Issues

• Implementation issues

Protocol Stack

UDP

IP

RX

AFS AFSCB
PT VL

VOL
UBIK

BOS

Here be dragons …
• kaserver (kauth)

• NFS translator (rmtsys)

• Backup Service (budb, backmon, bumon, butc)

Rx Protocol
• No changes required to core protocol

• All address handling performed within UDP and IP

RX Debug Packets

UDP

IP

RX

AFS AFSCB
PT VL

VOL
UBIK

BOS

RXDEBUG

RX DEBUG
• Four packet types can be requested

• 0x01 - Debug Statistics

• 0x02 - Connections

• 0x03 - Peers

• 0x04 - RX Statistics

Connection and Peers
host
cid

serial

callNumber

error
port flags type

secIdx spare
…

sparel

host
port ifMTU

idleWhen
refCount bSize burst

idleWhen

rtt
rtt_dev

…

sparel

timeout

0

4

8

12

16

20

24

28

32

36

40

What’s an endpoint?
• Currently - IPv4 address  
 
 

• Sometimes with port

address

address
port

IPv6/v4 endpoints
• Use v4 mapped addresses

00 00 00 00

00 00 00 00

00 00 FF FF

IPv4 address

port port

IPv6 address

0

4

8

12

16

20

IPv6 / v4 endpoints
• Use a discriminator

IPv6 address

port

typetype

IPv4 address

port

0

4

8

12

IPv6 / v4 endpoints
• Use an extended union

IPv6 address

port

type

length

IPv4 address

port

0

4

8

12

16

20

type

length

24

28

What is an endpoint?

IPv6 address

port

type

length
ext-union endpoint
 switch (afs_int32 type) {
 case ENDPOINT_UDP_IPV4:
 afs_int32 host;

 short port;
 case ENDPOINT_UDP_IPV6:
 opaque addr[16];
 short port;
 }

Codepoint allocation

• Who allocates new RX debug packet code points?

• Can existing hosts deal with receiving requests for
new debug packet types?

AFS

• Much of the AFS fileserver protocol is endpoint
agnostic

• Only RXAFS_FlushCPS is affected

RXAFS_FlushCPS
typedef afs_int32 IPAddrs<FLUSHMAX>;

RXAFS_FlushCPS(IN ViceIds *IdsArray, IPAddrs *AddrsArray, afs_int32 spare1,
 OUT afs_int32 *spare2, afs_int32 *spare3) = 162;

typedef endpoint Endpoints<FLUSHMAX>;

RXAFS_FlushCPS6(IN ViceIds *IdsArray, Endpoints *AddrsArray) = XXX;

AFSCB

• Clients report all interface addresses to the server

• Multiple RPCs provide this functionality  
 
 
 

• Addresses are irrelevant in today’s NAT’d world

RXAFSCB_TellMeAboutYourself
RXAFSCB_WhoAreYou
RXAFSCB_InitCallBackState2

AFSCB - Debugging
• Multiple RPCs provide debugging output

containing IPv4 addresses  
 
 
 
 

• Not necessary for normal cache manager
operation

RXAFSCB_GetServerPrefs
RXAFSCB_GetCellServDB
RXAFSCB_GetCellByNum

VOL
• VOL is mainly address agnostic, but forwarding is

an issue

• While AFSVol_SetForwarding is still called, it has no
effect on the server

 AFSVol_SetForwarding
 AFSVol_Forward
 AFSVol_ForwardMultiple

Vol - Forwarding
• Currently the client tells the server the IPv4 address

to move the volume to

• Does the client know best?

• What if the client and server have different views of
the world?

• Not as simple as just swapping IPv4 addresses for
v6 ones

ubik restrictions
• All ubik servers must be able to contact all other

ubik servers

• All clients must be able to contact all ubik servers
which can become sync sites

• The ubik server with the lowest address gets the
deciding vote at tied elections

• Need a form of ranking that works across v4 and v6

ubik - VOTE
• Only one service RPC with address dependencies

• A number of debugging RPCs to consider

VOTE_GetSyncSite

VOTE_Debug
VOTE_SDebug
VOTE_XDebug
VOTE_XSDebug

ubik - DISK
• One RPC which is used to find out all of the

addresses for a given Ubik server

DISK_UpdateInterfaceAddr

PT
• In general, the PT is address agnostic

• Exception to this is IP-ACLs which cause a number
of issues

PT_GetHostCPS

PT - IP ACLs

• An IP ACL is just a user with a special name
(192.168.0.1 rather than sxw)

• IPv6 addresses can be handled in similar ways

• We’d have to canonicalise

• And deal with wildcards

VL

• Protocol-wise, VL is by far the most affected

• Not helped by incomplete conversion between
different RPC families O -> N -> U

VL - O to N
GetEntryById
GetEntryByName
CreateEntry
ReplaceEntry
ListEntry
LinkedList
ListAttributes
ChangeAddr
UpdateEntry
UpdateEntryByName

GetEntryByIdN
GetEntryByNameN
CreateEntryN
ReplaceEntryN
ListEntryN
LinkedListN
ListAttributesN

ListAttributesN2

VL - N to U

GetEntryByNameU

GetAddrsU
RegisterAddrs

GetEntryByIdN
GetEntryByNameN
CreateEntryN
ReplaceEntryN
ListEntryN
LinkedListN
ListAttributesN
ListAttributesN2

vldb

• Storing large numbers of IPv6 addresses requires a
new vldb format

• Small number (2) can be stored in existing format

• Don’t register temporary addresses!

Migration Issues

• How do you expose IPv6-only volumes to old
clients?

• How do you safely migrate volumes to IPv6 only
hosts?

Configuration

• CellServDB

• NetRestrict

CellServDB
• New CellServDB format designed at Pittsburgh

Hackathon
[core]
thiscell = andrew.cmu.edu
use_dns = yes

[cells]
andrew.edu = {
 description = "Project Andrew - CMU"
 vlserver = tcp/128.2.10.2
 ptserver = udp/128.2.10.11
 dbserver = 128.1.10.7
 dbserver = FF00::128.2.10.28
 dbserver = db3.andrew.cmu.edu
 use_dns = yes
}

[ptserver]
servers = {
 vice2 = {
 address = 128.2.10.2:7002
 priority = 2
 }
}

[fileserver]
dbservers = {
 vlserver = vice7
}

[rank]
syntax for host addresses:
[proto/]host[/mask][:port]
128.2.10.2 = 2000
tcp/128.2.10.11 = 9000
128.2.10.2 = 2000
128.2.10.12:7003 = 1500
128.2.172/22 = 100

Implementation

• Anywhere there is an int for an address needs
rewritten

• All hash functions taking addresses have to be
reworked

• Everywhere we print / log / audit an IP address
needs updated

Implementation
• RX implementation needs to be dual stack

• ICMP handling needs to work for IPv6

• The afsconf package needs to handle IPv6 cell
information

• New fs pioctls (for cell manipulation) have to be
created

• The vldb ubik database must store IPv6 addresses

Implementation

• The host package needs to track IPv6 clients

• vos needs to be able to handle servers with
multiple addresses

• ubik’s multi-home support (and configuration)
needs work

Happy Eyeballs

• If we have both IPv4 and IPv6 addresses for a
service - which should we use?

• RFC6555 describes a solution for TCP

DNS6to4

• Allows v6-only clients to talk to v4-only servers

• But requires a name lookup

• What do we lookup?

PMTU Discovery

• IPv6 allows robust, platform independent, PMTU
discovery

• How do we utilise that within RX?

Where YFS is today

• RX fully v6 capable

• Servers contactable over v6 addresses

• v6 registration for fileservers in testing

• v6 ubik voting still outstanding

