
OpenAFS Unix Cache Manager
Performance

Mark Vitale <mvitale@sinenomine.net>
AFS and Kerberos Best Practices Workshop
20 August 2015

objectives

• Understand the performance characteristics of the
OpenAFS Unix Cache Manager:
– frequent causes of performance problems
– configuration options
– performance measurement & troubleshooting

• Have a better answer the next time your phone
rings and you hear this from the other end of the
line…

2

“Why is AFS slow?”

3

round up the usual suspects

• the network: packet drops?
• the DB servers: loss of quorum?
• the volume servers: failed volume release?
• the fileservers: threads waiting? callback space

exhausted?
• the KDC: okay, now you’re just guessing….
• They’re all fine - what else could it be?

4

the cache manager?

• The OpenAFS Cache Manager is quite complex,
and does much more than a typical light-weight
client.

• It maintains lots of different kinds of caches, not
just one.

• One Cache Manager is shared by all AFS users and
applications on a given host system.

• Sometimes the Cache Manager is a “server” too.

5

common pain triggers

• large parallel workloads against AFS content
– parallel builds; research analysis runs; LSF batch jobs

• live RW content (one writer, many readers)
– message queues; logs

• s.l.o.o.o.o.o.o.o.o.o.o.o.o.w writer
• multiple NAT traversals

– virtual machines; working from home

6

potential causes

• file contention (writes are exclusive)
• internal lock contention – AFS_GLOCK,

other global locks
• callback storms
• somebody else’s network

7

cache manager configuration

• lots of options if you want to tweak
• the default auto-tuning is almost always fine

if you don’t
• pick your cache size and the rest is

calculated based on that
• for “server” type loads, look at –stats and -

volumes

8

-fakestat

• -fakestat (and –fakestat-all) are performance optimizations
to improve interactive user experience while browsing /afs
with:
– OS X Finder
– other Linux GUI file navigators
– Unix ls -l (or ls with coloring on)

• as the name implies, they do this by “faking” replies to
stat() calls in order to avoid contacting the fileserver.

• often causes performance problems with large cache
manager “server-like” workloads.

9

server preferences

• internal CM “rankings” for choosing a
server when there’s multiple choice

• not configurable via afsd options!
• defaults are often fine
• fs getserverprefs [-vl] [-numeric]
• sometimes you may want to “steer” with

– # fs setserverprefs ……

10

cache mgr troubleshooting (basic)

• rxdebug
• cmdebug
• xstat_cm_test
• rxping, rxtraceroute

11

cmdebug

• cmdebug <cm_host_or_IP> [options]
• by default (no options), displays current locks
• can degrade performance if you have lots of –stat

entries
– the vcache/callback scanner converges on O(n^2)

• config query options are always safe:
– -cache, -addrs, -cellservdb

12

xstat_cm_test

• xstat_cm_test <cm_host_or_ip> -onceonly -
collID <n>
– n=0 internal routine call counts
– n=1 –not currently implemented-
– n=2 config settings, performance counters

• fileserver RPC counts & response times

13

cache mgr troubleshooting (advanced)

• fstrace
– mostly for developers

• Linux CM only:
– echo t > /proc/sysrq-trigger

• slightly disruptive
– echo c > /proc/sysrq-trigger

• very disruptive

14

futures

• global lock mitigation
• make the housekeepers better housemates
• “watch this space”

15

Questions?

16

