

Testing with Docker

Experiences from the development of Auristor

Marc Dionne
Your File System Inc.

Context

● Extensive unit testing in place
– Command suite

– RPCs

– Libraries

● .. but limited testing of larger setups
– Ubik database behaviour

– Volume operations

Context

● Distributed systems are difficult to test
– Multiple servers

– Complex configuration requirements

● Hard to answer some theoretical questions
– Scaling

● how many fileservers can really be in a cell
● How many database servers could be used if some code limits were removed

– Verifying that database servers reach (or regain) quorum

● Typical solution: VMs
– Requires a lot of resources, hard to scale to larger numbers of servers

– Requires time to build images, boot servers

– Complexity of configuring everything correctly

Goals

● Speed
– Quick cycle for repeatedly testing code changes

● Scaling
– Want to be able to test/reach some limits, ex: run the maximum number

of fileservers

● Flexibility
– Mix of database and fileservers

– Various cell sizes

● Simplicity
– Fit in TAP framework

– Fully scripted/automated

Docker

● Docker looked promising as a base tool
– Isolates the host from the testing

– Eases cleanup – files and leftover processes

– Lightweight compared to a full VM

● Recent version available in Fedora
● RHEL not too far behind

Building blocks

● TAP framework
● Single server cell utility, used in many tests

– Builds a centralized temporary config, including
fileserver data

– Start a bos server, creates instances

Docker - Network

● Bridge interface created by docker daemon
– Can also specify your own

● When created, containers get an IP address assigned within
that subnet
– Released when container is deleted

– No DHCP, can't predict address

● Host gets a fixed IP (ex: 172.17.42.1) on the same subnet
● Host and containers can talk to each other without further config

– Communication between containers and outside world beyond host
requires config

Docker - Files

● By default only a few host files are visible inside containers
– Container only sees files in the image

● Modifications are stored in docker's internal storage
– /var/lib/docker on fedora

– Stores only differences from base image

– Removed when container is deleted

● Can use volumes (-v|--volume) to map host files into the
container's namespace, ro or rw

● Volumes can also be named and used to share data between
containers
– Removed when the last container referencing it is deleted

Docker - Users

● Docker doesn't currently namespace user IDs
– Work in progress

● Containers run as root, even if started by a regular user
– The process can switch to another user ID

– A default user can be specified when building the image

● File access is done as that user
– If exposing host files, may need to cleanup inside container or

as root afterwards

– If running as a different user, may need to adjust permissions of
 exposed host files

Docker - Image

● Containers are created from a base image
● A custom image can be built from a published image

– Dockerfile describes what to add/modify
● Base image – will be fetched if not available locally
● Commands to run, typically yum/dnf install
● User ID
● Local files to add to the image
● Volume definitions

– “docker build” creates and labels the image
● Fairly fast once base image is available
● Only needs to be rebuilt if there's a need for updated components – for

testing, rarely

Strategy

● Use centos as base image
– Same image can be used on different platforms
– But may need per-platform base image at some point

● Build the build tree on host
– Use a volume to map it into the containers

● Same path in all containers

– Use executables directly from the build tree
● Building rpms is very slow
● “make install” also takes a little while
● Shortens the code/compile/test cycle

● Basic structure
– Single host script to setup config, start/coordinate containers and stop/delete them
– Single “slave” script that starts everything needed inside the container
– Test scripts call host script with parameters – number db and fileservers

Strategy

● Build on top of existing cell testing infrastructure
– Already have a command to setup config and start a single server cell

– Add option to start just db or fs server processes, or both

● Files
– All config files and server data consolidated under a single directory

– Separate areas on host for each container
● In particular, logs and data need to be separate, and some runtime data (sysid,

etc.)
● Mapped at the same location in all containers
● Mapping from the host is mainly to make debugging easier

– Ex: host sees /var/tmp/slavefs0.. /var/tmp/slavedb0.., slaves use
/var/tmp/yfs_docker_tests

Network

● Let docker assign IPs as each container starts
● Host script uses “docker inspect” to discover container IP

addresses
– Builds config file for server and client processes

– Places resulting file in a build tree location accessible in the containers

– Containers poll for that file as a signal to start
● File moved into final location

● Check that cell has started before returning
– Use “vos listfs” to verify that all fileservers have registered in the vldb

– Use “vos listvol” to verify that all volservers have started and are
connected to their fileservers

Tests

● Use docker pause/unpause to simulate a server
crashing or going away and coming back

● Various in-tree test scenarios are built on top of basic
host script
– Test of volume operations, addsite, release, move

– Ubik tests
● Reaching quorum in the expected time frame
● Regaining quorum after losing the sync site
● Avoiding DB corruption

● Host script can be used directly for ad-hoc testing

Observations

● Can start a large number of servers in a short time frame
– Ex: ~1m for 50 servers
– Very quick for single DB server cells (no quorum delay), about 30s extra for multiple

DB servers

● Needed many tweaks to the cell startup sequence, for consistent (shorter)
timings
– All servers start simultaneously

● Uncommon situation for a real cell

– Many dependencies
● DB servers need to reach quorum
● FS servers need to register with the DB servers
● fileserver and volserver on each container establish communication with each other

– Start with pre-exisiting empty databases

– Single server cell startup is now ~3s

Summary

● docker has its limitations, but for testing it is an
excellent fit

● The framework has allowed us to easily
exercise scenarios that would be
difficult/impossible to test otherwise

Future - WIP

● Incorporate client module testing
– Run lightweight VMs with qemu/kvm

– Build VM image

– Share files with host

– Load client kernel module in VM

● Run tests that combine a set of servers and a set of clients
● Add more complex scenarios
● Stress tests
● Benchmarks

Questions

Quick demo? (thechnology permitting)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

