
Kerberos & HPC
Batch systems

Matthieu Hautreux
(CEA/DAM/DIF)

matthieu.hautreux@cea.fr

M. Hautreux Kerberos Workshop 2010 2

Outline

● Kerberos authentication

● HPC site environment

● Kerberos & HPC systems

● AUKS

● From HPC site to HPC Grid environment

M. Hautreux Kerberos Workshop 2010 3

Kerberos authentication

● Key concepts

 Trusted third party
 Commonly made of 1 server and its backup (KDC)

 Single Sign-On
 Based on Forwardable/Forwarded TGT

 Limited credentials lifetime
 With renewal mechanism

● Footprint

 Numerous Supported OS
 Linux-Based systems, OS X, Microsoft, ...

 Numerous Supported Services
 OpenSSH, LDAP, ...

 Numerous Supported Distributed File System
 OpenAFS, NFS, NFSv4, ...

 Mostly in private network

M. Hautreux Kerberos Workshop 2010 4

Kerberos authentication

● Key concepts

 Trusted third party
 Commonly made of 1 server and its backup

 Single Sign-On
 Based on Forwardable/Forwarded TGT

 Limited credentials lifetime
 With renewal mechanism

● Footprint

 Numerous Supported OS
 Linux-Based systems, OS X, Microsoft, ...

 Numerous Supported Services
 OpenSSH, LDAP, ...

 Numerous Supported Distributed File System
 OpenAFS, NFS, NFSv4, ...

● OpenSSH, common usage of kerberos

 Simplify cascading connections authentication (SSO)
 Provides connection trees from users to their resources

 Limited validity through expiration time
 Each connection associated to a validity countdown, the forwarded

TGT lifetime

● OpenSSH, enhanced usage of kerberos

 Based on cascading credentials refresh
 Provided by Simon Wilkinson GSSAPI Key-exchange patch
 Integrated in GSI-SSH (since 4.7)

 Ease refresh of the connections tree
 Each connection now associated to the validity countdown of the

initial client
 Initial client credential renew is the single spark to refresh the tree

M. Hautreux Kerberos Workshop 2010 5

HPC environment

● HPC key concepts

 Distributed systems
 Centralized to be used by numerous users

 Large systems
 Thousands of compute nodes/cores

 Heavy loaded systems
 From short and small to large and long computations
 With numerous pending jobs waiting for free resources to start
 With non negligeable delays between jobs submission and start time

 Complex systems
 Dedicated tools to optimize resources access and scheduling
 Internal distributed File Systems for data sharing between resources

● HPC key concepts

 Distributed systems
 Centralized to be remotely used by numerous users

 Large systems
 Thousands of compute nodes/cores

 Heavy loaded systems
 From short and small to large and long computations
 With numerous running and pending jobs
 With non negligeable delays between jobs submission and start time

● Common HPC components

 Batch systems and Parallel launchers
 Schedule jobs, grant resources access and launch computations
 Slurm, Torque, openSSH, ...

 Distributed File Systems
 Share data efficiently between multiple resources
 Lustre, GPFS, ...

M. Hautreux Kerberos Workshop 2010 6

HPC environment

● HPC key concepts

 Distributed systems
 Centralized to be remotely used by numerous users

 Large systems
 Thousands of compute nodes/cores

 Heavy loaded systems
 From short and small to large and long computations
 With numerous running and pending jobs
 With non negligeable delays between jobs submission and start time

● HPC common specificities

 Batch systems and Parallel launchers
 To schedule jobs, grant resources access and launch computations
 Slurm, Torque, ...

 Distributed File Systems
 To share data efficiently between multiple resources
 Lustre, GPFS, ...

● Common usage

 Login Nodes connection
 Using openSSH/GSI-SSH

 Data staging
 NAS <-> Cluster FS / Local FS transfers

 Data processing
 Application development
 Results preprocessing/postprocessing

 Interactive jobs execution
 With a batch system and a parallel launcher
 May perform data staging too
 For application development and validation
 For pre/post-processing

 Batch jobs submission
 With a batch system and a parallel launcher
 May perform data staging too
 For non-interactive production computation

M. Hautreux Kerberos Workshop 2010 7

Kerberos & HPC systems

● Kerberos authentication key concepts

 Trusted third party
 Single Sign-On
 Limited credentials lifetime

● Kerberos & HPC main issues

 Lifetime management
 What is a common session time in a HPC environment

 Scalability
 Trusted Third party scalability whit thousands of nodes

 Execution tools kerberos support
 Tools used to remotely execute commands must be compatible

 Batch execution
 Executed on behalf of users

● Kerberos interests in HPC

 Ease user access to compute services
 Workstation to login nodes connections

 Ease compute nodes access
 Login nodes to compute nodes connections
 For monitoring, debugging, ...

 Secure data staging stages
 Access data on secured NAS seamlessly
 For both interactive and batch mode

 Secure remote connections
 Contact external servers securely
 For both interactive and batch mode

 Secured distributed services access
 Inside/Outside the clusters

 Services access tracability

M. Hautreux Kerberos Workshop 2010 8

Kerberos & HPC systems

● Kerberos interests in HPC

 Workstation to login nodes connections
 Ease user access to compute services

 Login nodes to compute nodes connections
 Ease compute nodes access for monitoring, debugging, ...

 Data staging
 Access data on secured NAS seamlessly

 Lifetime management
 What is a common session time in a HPC environment
 How to benefit from kerberos integrated renew mechanism

 Scalability
 Trusted Third party scalability with thousands of active nodes

 Batch mode
 Involved no interactive input from user, from where to get a

credential in that case ?

 HPC specific tools
 Are they providing kerberos support ?

● Kerberos concerns in HPC

 Credential Lifetime management
 What is a common session time in a HPC environment
 How to get benefit from kerberos integrated renew mechanism

 Batch mode
 No interactive input from user involved
 From where to get a valid credential ?

 Scalability
 Trusted third party behavior with thousands of active nodes
 Credential forwarding strategies with thousands of peers

 HPC specific tools
 Are they providing kerberos support ?

M. Hautreux Kerberos Workshop 2010 9

AUKS - Description

● Goal

 Provides Kerberos credentials in non interactive
environment

 Batch systems, cron, ...

● Description

 Kerberos distributed credential delegation system
 Kerberized client/server application
 External tool

 Can be integrated in different projects

 Linux tool
 Developed and tested on CentOS, RedHat, Fedora

 Opensource
 http://sourceforge.net/projects/auks/

M. Hautreux Kerberos Workshop 2010 10

AUKS - Overview

● Internals

 Multi-threaded C application
 Based on MIT kerberos implementation only (>1.3)

● Components

 Central Daemon (auksd)
 Kerberized server
 Authorizes requests using client principal and local ACLs
 Serves add/get/remove/dump TGT requests
 Stores user TGTs in a FS directory (for persistency)

 Client API (libauksapi)
 Kerberized client
 Provides functions to perform add/get/remove/dump requests
 Enables third party application to use AUKS functionalities

 Client program (auks)
 Encapsulate API functions
 Enable scripted use

M. Hautreux Kerberos Workshop 2010 11

AUKS - Overview

● Auks Features

 Auksd
 Stores TGT by uid (TGT principal to

local uid conversion)
 Only one TGT per user
 Get requests by uid
 Automatic TGT renew mechanism

 libauksapi
 Automatic switch to backup server
 Configurable retries, timeout and

delay between retries
 Simplify auks integration in

external projects

 HA
 Active/Passive
 Rely on external tool (PaceMaker)
 Requires a shared FS

M. Hautreux Kerberos Workshop 2010 12

AUKS - Overview

● Auks Daemon

M. Hautreux Kerberos Workshop 2010 13

AUKS - Overview

● Auks authorization rules

 Defined by ACLs
 Based on

 Requester Kerberos principal
 Requester host

 Determine requesters role
 Guest : add request for own cred only
 User : add/get/remove for own cred only
 Admin : add/get/remove/dump for all creds

● Auks renew mechanism

 Implemented as a dedicated client
 Running as a daemon
 With admin Auks role
 Dumping credentials periodically and refreshing them when

required

M. Hautreux Kerberos Workshop 2010 14

AUKS - Overview

● Auks authorization rules

 Defined by ACLs
 Based on

 Requester Kerberos principal
 Requester host

 Determine requester role
 Guest : add request for own cred only
 User : add/get/remove for own cred only
 Admin : add/get/remove/dump for all creds

● Long running Jobs

 Users can periodically refresh their Auks TGT
 Performing a new add request
 i.e. Once a day, a week, ...

 Batch service can renew TGTs using Auks
 Performing a new add request
 Automatically using refreshed TGTs

● Long running Jobs

 Users can periodically refresh their Auks TGT
 Performing a new add request
 i.e. Once a day, a week, ...

 Users/Batch systems can renew TGTs using Auks
 Performing a get request (user/admin only)
 Automatically using refreshed TGTs

● Scalability in parallel jobs

 Based on addressless TGT
 Obtained and used during add request

 Single addressless credential per user
 Stored in Auks Memory Cache
 Provided to requesters without KDC interaction
 Forwarding to thousands of peers without KDC interaction

M. Hautreux Kerberos Workshop 2010 15

AUKS - Overview

● Auks protocol example scenario

 Alice forwards her TGT to the Auks daemon
 Alice asks Bob to execute her request
 Bob asks Auks for Alice TGT
 Bob executes Alice request using her kerberos identity

M. Hautreux Kerberos Workshop 2010 16

AUKS - Scalability

● 3 stages communication protocol

 Request/Reply/Acknowledgement
 Leave the TIME_WAIT TCP state on client side

 Improve server request processing sustained rate
 TIME_WAIT is 60s long on Linux for ~65k ports
 Sustained rate > 1100 req/s is not possible

● Replay cache management

 Enabled by default in kerberos API
 Uses a single file per user/application
 Sync file on disk at each addition
 Multiple threads -> Contention on replay cache

 Can be disabled on demand in Auks
 Clusters internal networks can often be considered trusted
 Greatly improves parallel kerberos communications
 Choice depending on parallelism requirements

M. Hautreux Kerberos Workshop 2010 17

AUKS - Scalability

● 3 stages communication protocol

 Request/Reply/Acknowledgement
 Leave the TIME_WAIT TCP state on client side

 Improve server request processing sustained rate
 TIME_WAIT is 60s long on Linux for ~65k ports ->
 Sustained rate > 1100 req/s is not possible

● Replay cache management

 Enabled by default in kerberos API
 Uses a single file per user/application
 Sync file on disk at each addition
 Multiple threads -> Contention on replay cache sync

 Can be disabled on demand in Auks
 Clusters internal networks can often be considered trusted
 Greatly improves parallel kerberos commmunications
 Choice depending on parallelism requirements

● Addressless tickets management

● Addressless versus Addressed TGTs

 Addressed tickets
 Requires a KDC interaction for each forwarding operation
 KDC is single threaded
 Auks sustained rate becomes KDC sustained rate (~dozens of

TGT per second)

 Addressless tickets
 Not need to acquire a new TGT for each requester
 Sustained rate only limited by Auks internals

● Renew mechanism

 User/Admin Auks roles enable to get TGTs
 TGTs can thus be renewed using Auks

 Renew sustained rate only limited by Auks internals

 Fallback to default renew mechanism (KDC)
 In case of temporary Auks failure that would result in invalid

credentials

M. Hautreux Kerberos Workshop 2010 18

AUKS - Scalability results

● TestBed

 1 server + 100 clients
 SuperMicro 6015TW-INF
 Bi-Socket Quad-Core (Intel Harpertown 2.8 GHz)
 16 Go RAM
 SATA Intel 3 GBps controller

● Protocol

 5 consecutives batchs of 16000 simultaneous
requests (20 requests per core)

 Various quantity of workers
 With or without replay cache
 Add versus get requests
 Measure average number of requests per second

M. Hautreux Kerberos Workshop 2010 19

AUKS - Scalability results

0 200 400 600 800 1000 1200

0

1000

2000

3000

4000

5000

6000

7000

8000

Requests per second depending on Auks daemon workers quantity

(With and without replay cache)

Requests per sec (without
replay cache)

Requests per sec (with
replay cache)

Workers quantity

R
e

q
u

e
st

s
pe

r
se

co
n

d

M. Hautreux Kerberos Workshop 2010 20

AUKS - Scalability results

0 200 400 600 800 1000 1200

0

1000

2000

3000

4000

5000

6000

7000

8000

Requests per second by type depending on AUKS daemon workers quantity

Get Requests per sec
(without replay cache)

Add Requests per sec
(without replay cache)

workers quantity

R
e

q
ue

st
s

nu
m

b
e

r

M. Hautreux Kerberos Workshop 2010 21

AUKS – Possible ways of enhancement

● Global scalability by TGS prefetching

 Current known limitation
 TGS still acquired using TGT on each node
 Using basic kerberos API (scalability issue)

 TGS prefetching
 Store addressless TGTs and TGSs using Auks Daemon
 TGS to prefetch based on already acquired TGS and a

configurable per principal list
 As many KDC requests as users multiply by number of different

kerberized services + 1
 Auks becomes a KDC caching system

● Addressed TGT support

 Better security but with far less scalability

● High-Availability

 Active-Active architecture

M. Hautreux Kerberos Workshop 2010 22

AUKS – Batch systems integration

● Pluggable integration in Slurm

 A highly scalable resources manager
 Open source, mainly developped at LLNL

 https://computing.llnl.gov/linux/slurm/

 Auks plugin for Slurm
 Included in Auks tarball
 Do not provide Kerberos authentication
 Provide kerberos credential support and renewal

 Really small overhead in jobs launches
 Sustained rate up to 7000 req/sec of auksd
 ~1 seconds overhead for a thousand nodes submission

 Every user job extends running jobs kerberos lifetime
 Due to internal Auks refresh mechanism

● Easily integrated in Cron

 Using auks command line

https://computing.llnl.gov/linux/slurm/

M. Hautreux Kerberos Workshop 2010 23

From HPC site to HPC Grid Environment

● Tightly integrated in Slurm

 A Highly scalable resources manager
 Open source, mainly developped at LLNL

 https://computing.llnl.gov/linux/slurm/

 Auks plugin for Slurm
 Included in Auks tarball
 Do not provide Kerberos authentication
 Provide kerberos credential support and renewal

 Really small overhead in jobs launches
 Sustained rate up to 7000 req/sec of Aukds
 1 seconds overhead for a 7 thousands nodes cluster

 Every user jobs extends running jobs kerberos lifetime
 Due to internal Auks refresh mech

● Easily integrated in Cron

 Using auks command line

● HPC environment

 Kerberos authentication on workstations
 With a background renew mechanism

 GSI-SSH for HPC site remote connections
 On both workstations and cluster nodes
 Compiled without GSI features (kerberos GSSAPI)
 Offers cascading credentials refresh (Single point of renewal)

 NFSv4 + kerberos for remote FS (site centric)
 Provide NAS with enhanced security
 Could be replaced with OpenAFS + kerberos

https://computing.llnl.gov/linux/slurm/

M. Hautreux Kerberos Workshop 2010 24

From HPC site to HPC Grid Environment

● HPC environment

 Kerberos authentication on workstations
 With a background renew mechanism

 GSI-SSH for HPC site remote connections
 On both workstations and cluster nodes
 Compiled without GSI features
 Offers cascading credentials refresh (Single point of renewal)

 NFSv4 + kerberos for remote FS (site centric)
 Provide NAS with enhanced security
 Could be replaced with OpenAFS

 Lustre (+ kerberos)
 Provide clusters scalable FS
 ~Experimental support of kerberos based on NFSv4 kerberos

support

● Grid environment

 X509 PKI for user identities management
 Users own x509 certificates and associated keys

 GSI-SSH to access HPC sites gateways
 Compiled with GSI features (GSI GSSAPI)
 Offers cascading proxy certificates refresh (since GSI-SSH-4.8)

 PAM-PKINIT on HPC sites gateways
 Experimental pam module to get TGT from proxy certs using PKINIT
 Linked to GSI-SSH cascading refresh for TGT acquisition
 http://sourceforge.net/projects/pam-pkinit/

 GSI-SSH for HPC site remote connections
 Compiled without GSI features (kerberos GSSAPI)
 Offers cascading credentials refresh
 Automatically use TGT acquired by PAM-PKINIT
 Benefit from PAM-PKINIT refresh stages
 Enables kerberized access to all the HPC site

M. Hautreux Kerberos Workshop 2010 25

Questions ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25

