
Kerberos & HPC
Batch systems

Matthieu Hautreux
(CEA/DAM/DIF)

matthieu.hautreux@cea.fr

M. Hautreux Kerberos Workshop 2010 2

Outline

● Kerberos authentication

● HPC site environment

● Kerberos & HPC systems

● AUKS

● From HPC site to HPC Grid environment

M. Hautreux Kerberos Workshop 2010 3

Kerberos authentication

● Key concepts

 Trusted third party
 Commonly made of 1 server and its backup (KDC)

 Single Sign-On
 Based on Forwardable/Forwarded TGT

 Limited credentials lifetime
 With renewal mechanism

● Footprint

 Numerous Supported OS
 Linux-Based systems, OS X, Microsoft, ...

 Numerous Supported Services
 OpenSSH, LDAP, ...

 Numerous Supported Distributed File System
 OpenAFS, NFS, NFSv4, ...

 Mostly in private network

M. Hautreux Kerberos Workshop 2010 4

Kerberos authentication

● Key concepts

 Trusted third party
 Commonly made of 1 server and its backup

 Single Sign-On
 Based on Forwardable/Forwarded TGT

 Limited credentials lifetime
 With renewal mechanism

● Footprint

 Numerous Supported OS
 Linux-Based systems, OS X, Microsoft, ...

 Numerous Supported Services
 OpenSSH, LDAP, ...

 Numerous Supported Distributed File System
 OpenAFS, NFS, NFSv4, ...

● OpenSSH, common usage of kerberos

 Simplify cascading connections authentication (SSO)
 Provides connection trees from users to their resources

 Limited validity through expiration time
 Each connection associated to a validity countdown, the forwarded

TGT lifetime

● OpenSSH, enhanced usage of kerberos

 Based on cascading credentials refresh
 Provided by Simon Wilkinson GSSAPI Key-exchange patch
 Integrated in GSI-SSH (since 4.7)

 Ease refresh of the connections tree
 Each connection now associated to the validity countdown of the

initial client
 Initial client credential renew is the single spark to refresh the tree

M. Hautreux Kerberos Workshop 2010 5

HPC environment

● HPC key concepts

 Distributed systems
 Centralized to be used by numerous users

 Large systems
 Thousands of compute nodes/cores

 Heavy loaded systems
 From short and small to large and long computations
 With numerous pending jobs waiting for free resources to start
 With non negligeable delays between jobs submission and start time

 Complex systems
 Dedicated tools to optimize resources access and scheduling
 Internal distributed File Systems for data sharing between resources

● HPC key concepts

 Distributed systems
 Centralized to be remotely used by numerous users

 Large systems
 Thousands of compute nodes/cores

 Heavy loaded systems
 From short and small to large and long computations
 With numerous running and pending jobs
 With non negligeable delays between jobs submission and start time

● Common HPC components

 Batch systems and Parallel launchers
 Schedule jobs, grant resources access and launch computations
 Slurm, Torque, openSSH, ...

 Distributed File Systems
 Share data efficiently between multiple resources
 Lustre, GPFS, ...

M. Hautreux Kerberos Workshop 2010 6

HPC environment

● HPC key concepts

 Distributed systems
 Centralized to be remotely used by numerous users

 Large systems
 Thousands of compute nodes/cores

 Heavy loaded systems
 From short and small to large and long computations
 With numerous running and pending jobs
 With non negligeable delays between jobs submission and start time

● HPC common specificities

 Batch systems and Parallel launchers
 To schedule jobs, grant resources access and launch computations
 Slurm, Torque, ...

 Distributed File Systems
 To share data efficiently between multiple resources
 Lustre, GPFS, ...

● Common usage

 Login Nodes connection
 Using openSSH/GSI-SSH

 Data staging
 NAS <-> Cluster FS / Local FS transfers

 Data processing
 Application development
 Results preprocessing/postprocessing

 Interactive jobs execution
 With a batch system and a parallel launcher
 May perform data staging too
 For application development and validation
 For pre/post-processing

 Batch jobs submission
 With a batch system and a parallel launcher
 May perform data staging too
 For non-interactive production computation

M. Hautreux Kerberos Workshop 2010 7

Kerberos & HPC systems

● Kerberos authentication key concepts

 Trusted third party
 Single Sign-On
 Limited credentials lifetime

● Kerberos & HPC main issues

 Lifetime management
 What is a common session time in a HPC environment

 Scalability
 Trusted Third party scalability whit thousands of nodes

 Execution tools kerberos support
 Tools used to remotely execute commands must be compatible

 Batch execution
 Executed on behalf of users

● Kerberos interests in HPC

 Ease user access to compute services
 Workstation to login nodes connections

 Ease compute nodes access
 Login nodes to compute nodes connections
 For monitoring, debugging, ...

 Secure data staging stages
 Access data on secured NAS seamlessly
 For both interactive and batch mode

 Secure remote connections
 Contact external servers securely
 For both interactive and batch mode

 Secured distributed services access
 Inside/Outside the clusters

 Services access tracability

M. Hautreux Kerberos Workshop 2010 8

Kerberos & HPC systems

● Kerberos interests in HPC

 Workstation to login nodes connections
 Ease user access to compute services

 Login nodes to compute nodes connections
 Ease compute nodes access for monitoring, debugging, ...

 Data staging
 Access data on secured NAS seamlessly

 Lifetime management
 What is a common session time in a HPC environment
 How to benefit from kerberos integrated renew mechanism

 Scalability
 Trusted Third party scalability with thousands of active nodes

 Batch mode
 Involved no interactive input from user, from where to get a

credential in that case ?

 HPC specific tools
 Are they providing kerberos support ?

● Kerberos concerns in HPC

 Credential Lifetime management
 What is a common session time in a HPC environment
 How to get benefit from kerberos integrated renew mechanism

 Batch mode
 No interactive input from user involved
 From where to get a valid credential ?

 Scalability
 Trusted third party behavior with thousands of active nodes
 Credential forwarding strategies with thousands of peers

 HPC specific tools
 Are they providing kerberos support ?

M. Hautreux Kerberos Workshop 2010 9

AUKS - Description

● Goal

 Provides Kerberos credentials in non interactive
environment

 Batch systems, cron, ...

● Description

 Kerberos distributed credential delegation system
 Kerberized client/server application
 External tool

 Can be integrated in different projects

 Linux tool
 Developed and tested on CentOS, RedHat, Fedora

 Opensource
 http://sourceforge.net/projects/auks/

M. Hautreux Kerberos Workshop 2010 10

AUKS - Overview

● Internals

 Multi-threaded C application
 Based on MIT kerberos implementation only (>1.3)

● Components

 Central Daemon (auksd)
 Kerberized server
 Authorizes requests using client principal and local ACLs
 Serves add/get/remove/dump TGT requests
 Stores user TGTs in a FS directory (for persistency)

 Client API (libauksapi)
 Kerberized client
 Provides functions to perform add/get/remove/dump requests
 Enables third party application to use AUKS functionalities

 Client program (auks)
 Encapsulate API functions
 Enable scripted use

M. Hautreux Kerberos Workshop 2010 11

AUKS - Overview

● Auks Features

 Auksd
 Stores TGT by uid (TGT principal to

local uid conversion)
 Only one TGT per user
 Get requests by uid
 Automatic TGT renew mechanism

 libauksapi
 Automatic switch to backup server
 Configurable retries, timeout and

delay between retries
 Simplify auks integration in

external projects

 HA
 Active/Passive
 Rely on external tool (PaceMaker)
 Requires a shared FS

M. Hautreux Kerberos Workshop 2010 12

AUKS - Overview

● Auks Daemon

M. Hautreux Kerberos Workshop 2010 13

AUKS - Overview

● Auks authorization rules

 Defined by ACLs
 Based on

 Requester Kerberos principal
 Requester host

 Determine requesters role
 Guest : add request for own cred only
 User : add/get/remove for own cred only
 Admin : add/get/remove/dump for all creds

● Auks renew mechanism

 Implemented as a dedicated client
 Running as a daemon
 With admin Auks role
 Dumping credentials periodically and refreshing them when

required

M. Hautreux Kerberos Workshop 2010 14

AUKS - Overview

● Auks authorization rules

 Defined by ACLs
 Based on

 Requester Kerberos principal
 Requester host

 Determine requester role
 Guest : add request for own cred only
 User : add/get/remove for own cred only
 Admin : add/get/remove/dump for all creds

● Long running Jobs

 Users can periodically refresh their Auks TGT
 Performing a new add request
 i.e. Once a day, a week, ...

 Batch service can renew TGTs using Auks
 Performing a new add request
 Automatically using refreshed TGTs

● Long running Jobs

 Users can periodically refresh their Auks TGT
 Performing a new add request
 i.e. Once a day, a week, ...

 Users/Batch systems can renew TGTs using Auks
 Performing a get request (user/admin only)
 Automatically using refreshed TGTs

● Scalability in parallel jobs

 Based on addressless TGT
 Obtained and used during add request

 Single addressless credential per user
 Stored in Auks Memory Cache
 Provided to requesters without KDC interaction
 Forwarding to thousands of peers without KDC interaction

M. Hautreux Kerberos Workshop 2010 15

AUKS - Overview

● Auks protocol example scenario

 Alice forwards her TGT to the Auks daemon
 Alice asks Bob to execute her request
 Bob asks Auks for Alice TGT
 Bob executes Alice request using her kerberos identity

M. Hautreux Kerberos Workshop 2010 16

AUKS - Scalability

● 3 stages communication protocol

 Request/Reply/Acknowledgement
 Leave the TIME_WAIT TCP state on client side

 Improve server request processing sustained rate
 TIME_WAIT is 60s long on Linux for ~65k ports
 Sustained rate > 1100 req/s is not possible

● Replay cache management

 Enabled by default in kerberos API
 Uses a single file per user/application
 Sync file on disk at each addition
 Multiple threads -> Contention on replay cache

 Can be disabled on demand in Auks
 Clusters internal networks can often be considered trusted
 Greatly improves parallel kerberos communications
 Choice depending on parallelism requirements

M. Hautreux Kerberos Workshop 2010 17

AUKS - Scalability

● 3 stages communication protocol

 Request/Reply/Acknowledgement
 Leave the TIME_WAIT TCP state on client side

 Improve server request processing sustained rate
 TIME_WAIT is 60s long on Linux for ~65k ports ->
 Sustained rate > 1100 req/s is not possible

● Replay cache management

 Enabled by default in kerberos API
 Uses a single file per user/application
 Sync file on disk at each addition
 Multiple threads -> Contention on replay cache sync

 Can be disabled on demand in Auks
 Clusters internal networks can often be considered trusted
 Greatly improves parallel kerberos commmunications
 Choice depending on parallelism requirements

● Addressless tickets management

● Addressless versus Addressed TGTs

 Addressed tickets
 Requires a KDC interaction for each forwarding operation
 KDC is single threaded
 Auks sustained rate becomes KDC sustained rate (~dozens of

TGT per second)

 Addressless tickets
 Not need to acquire a new TGT for each requester
 Sustained rate only limited by Auks internals

● Renew mechanism

 User/Admin Auks roles enable to get TGTs
 TGTs can thus be renewed using Auks

 Renew sustained rate only limited by Auks internals

 Fallback to default renew mechanism (KDC)
 In case of temporary Auks failure that would result in invalid

credentials

M. Hautreux Kerberos Workshop 2010 18

AUKS - Scalability results

● TestBed

 1 server + 100 clients
 SuperMicro 6015TW-INF
 Bi-Socket Quad-Core (Intel Harpertown 2.8 GHz)
 16 Go RAM
 SATA Intel 3 GBps controller

● Protocol

 5 consecutives batchs of 16000 simultaneous
requests (20 requests per core)

 Various quantity of workers
 With or without replay cache
 Add versus get requests
 Measure average number of requests per second

M. Hautreux Kerberos Workshop 2010 19

AUKS - Scalability results

0 200 400 600 800 1000 1200

0

1000

2000

3000

4000

5000

6000

7000

8000

Requests per second depending on Auks daemon workers quantity

(With and without replay cache)

Requests per sec (without
replay cache)

Requests per sec (with
replay cache)

Workers quantity

R
e

q
u

e
st

s
pe

r
se

co
n

d

M. Hautreux Kerberos Workshop 2010 20

AUKS - Scalability results

0 200 400 600 800 1000 1200

0

1000

2000

3000

4000

5000

6000

7000

8000

Requests per second by type depending on AUKS daemon workers quantity

Get Requests per sec
(without replay cache)

Add Requests per sec
(without replay cache)

workers quantity

R
e

q
ue

st
s

nu
m

b
e

r

M. Hautreux Kerberos Workshop 2010 21

AUKS – Possible ways of enhancement

● Global scalability by TGS prefetching

 Current known limitation
 TGS still acquired using TGT on each node
 Using basic kerberos API (scalability issue)

 TGS prefetching
 Store addressless TGTs and TGSs using Auks Daemon
 TGS to prefetch based on already acquired TGS and a

configurable per principal list
 As many KDC requests as users multiply by number of different

kerberized services + 1
 Auks becomes a KDC caching system

● Addressed TGT support

 Better security but with far less scalability

● High-Availability

 Active-Active architecture

M. Hautreux Kerberos Workshop 2010 22

AUKS – Batch systems integration

● Pluggable integration in Slurm

 A highly scalable resources manager
 Open source, mainly developped at LLNL

 https://computing.llnl.gov/linux/slurm/

 Auks plugin for Slurm
 Included in Auks tarball
 Do not provide Kerberos authentication
 Provide kerberos credential support and renewal

 Really small overhead in jobs launches
 Sustained rate up to 7000 req/sec of auksd
 ~1 seconds overhead for a thousand nodes submission

 Every user job extends running jobs kerberos lifetime
 Due to internal Auks refresh mechanism

● Easily integrated in Cron

 Using auks command line

https://computing.llnl.gov/linux/slurm/

M. Hautreux Kerberos Workshop 2010 23

From HPC site to HPC Grid Environment

● Tightly integrated in Slurm

 A Highly scalable resources manager
 Open source, mainly developped at LLNL

 https://computing.llnl.gov/linux/slurm/

 Auks plugin for Slurm
 Included in Auks tarball
 Do not provide Kerberos authentication
 Provide kerberos credential support and renewal

 Really small overhead in jobs launches
 Sustained rate up to 7000 req/sec of Aukds
 1 seconds overhead for a 7 thousands nodes cluster

 Every user jobs extends running jobs kerberos lifetime
 Due to internal Auks refresh mech

● Easily integrated in Cron

 Using auks command line

● HPC environment

 Kerberos authentication on workstations
 With a background renew mechanism

 GSI-SSH for HPC site remote connections
 On both workstations and cluster nodes
 Compiled without GSI features (kerberos GSSAPI)
 Offers cascading credentials refresh (Single point of renewal)

 NFSv4 + kerberos for remote FS (site centric)
 Provide NAS with enhanced security
 Could be replaced with OpenAFS + kerberos

https://computing.llnl.gov/linux/slurm/

M. Hautreux Kerberos Workshop 2010 24

From HPC site to HPC Grid Environment

● HPC environment

 Kerberos authentication on workstations
 With a background renew mechanism

 GSI-SSH for HPC site remote connections
 On both workstations and cluster nodes
 Compiled without GSI features
 Offers cascading credentials refresh (Single point of renewal)

 NFSv4 + kerberos for remote FS (site centric)
 Provide NAS with enhanced security
 Could be replaced with OpenAFS

 Lustre (+ kerberos)
 Provide clusters scalable FS
 ~Experimental support of kerberos based on NFSv4 kerberos

support

● Grid environment

 X509 PKI for user identities management
 Users own x509 certificates and associated keys

 GSI-SSH to access HPC sites gateways
 Compiled with GSI features (GSI GSSAPI)
 Offers cascading proxy certificates refresh (since GSI-SSH-4.8)

 PAM-PKINIT on HPC sites gateways
 Experimental pam module to get TGT from proxy certs using PKINIT
 Linked to GSI-SSH cascading refresh for TGT acquisition
 http://sourceforge.net/projects/pam-pkinit/

 GSI-SSH for HPC site remote connections
 Compiled without GSI features (kerberos GSSAPI)
 Offers cascading credentials refresh
 Automatically use TGT acquired by PAM-PKINIT
 Benefit from PAM-PKINIT refresh stages
 Enables kerberized access to all the HPC site

M. Hautreux Kerberos Workshop 2010 25

Questions ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25

