
rxgk - GSSAPI based security for AFS

Simon Wilkinson
Your File System Inc

rxgk

• Design

• Implementation

• Deployment

History

• 2004 - Initial rxgk design at Stockholm Hackathon

• 2007 - Further design work in Stockholm

• 2007 - Prototype implementation for arla

• 2007 - AFS Best Practices Workshop
 Love Hörnquist Åstrand: “rxgk - why and how far”

• 2009 - Your File System Inc fund rxgk development

• 2009 - Edinburgh Hackathon discusses rxgk design

• 2009 - European AFS Workshop
 Simon Wilkinson: “rxgk : GSSAPI based security for AFS”

• 2010 - Complete set of rxgk Internet Drafts published

Design Goals
(and limitations)

mechanism independence

• All the world is not Kerberos

• Permit the use of any authentication mechanism with a
GSSAPI interface

• But don’t require kernel implementations of every GSSAPI
mechanism we support

algorithm agility

• No more fcrypt

• Really no more DES

• Agility required so we don’t have to do this dance again
for every crypto change

defend against cache poisoning attacks

• Using only the user’s key to secure connections opens us
to cache poisoning attacks

• Malicious user forges traffic from the fileserver, and
populates cache with bogus data

• Other users on the server read bogus data (and,
potentially, write it back to the fileserver)

• Particularly dangerous in the case of executables

departmental fileservers

• rxkad has a single, cell wide, key

• All servers have a copy of this key

• Knowledge of the key conveys super user powers - any
user may be impersonated to any server

• Currently impossible to run servers with a smaller set of
delegated powers

secure the callback channel

• Callbacks are currently unauthenticated

• In AFS3, this only leads to potential denial of service
attacks

• With extended callbacks, an attacker could manipulate
the contents of the client’s cache

• Extended callbacks requires a secure callback channel to
be deployable across the internet

anonymous cache managers

• Secure callbacks, and cache poisoning prevention require
cache manager keys

• Have to allow for cache managers which don’t have key
material

• Use work on anonymous GSSAPI to permit anonymous,
but keyed, cache managers

server enforced security policy

• aka “The First Packet Problem”

• Client sends its first packet to a server before the security
challenge

• Server cannot prevent that first packet containing
unencrypted data

• Server, therefore, cannot require that all communication
with it be encrypted

preserve location independence	

• Authenticate to “AFS”, not to individual servers

• User shouldn’t be involved when cache manager uses a
different server

• Particular issue with smartcard based GSSAPI
mechanisms

rx limitations

• Authentication is limited to single challenge / response

• Challenge is server initiated

• Restrictions on maximum packet size

rxgk design

overview

aklog

negotiation
service

cache
manager

fileserver
negotiation

service

vlserver ptserver

token acquisition

aklog

negotiation
service

cache
manager

fileserver
negotiation

service

• aklog on client

• performs GSSAPI
handshake with
negotiation service

• gets rxgk token
containing session key

vlserver ptserver

token storage

aklog

negotiation
service

fileserver
negotiation

service • aklog uploads token (and
session key) to cache
manager

vlserver ptserver

cache
manager

fileserver first contact

aklog

negotiation
service

negotiation
service

• Cache manager calls
negotiation service with:

• user’s token
• cache manager’s token
• fileserver uuid

• Gets an rxgk token
specific to that fileserver,
and an indication of
minimum security levelcache

manager

fileserver

ptservervlserver

fileserver connection

aklog

negotiation
service

negotiation
service

• Cache manager sends
first packet to fileserver

• Fileserver sends rxgk
challenge

• Client sends rxgk
response (using fileserver
token)

• fileserver converts client
identity (from token) to
pts identity

cache
manager

vlserver

fileserver

ptserver

connection encryption

• Three permitted encryption levels:

• clear: Only connection establishment is authenticated. An
active attacker can mount MITM attacks. Good for speed, poor
for security.

• integrity: Data in connection is integrity protected. An active
attacker cannot add or remove information, but a passive
attacker can read all information.

• encryption: Data in connection is privacy and integrity
protected. An attacker can neither read, nor amend, the data
straeam.

connection encryption

• Any algorithm defined by RFC3961 can be used for
connection encryption

• Initially working with AES, but algorithm (and hash) agility
is built in.

fileserver registration

aklog

negotiation
service

negotiation
service

• At start up, fileserver
registers with vlserver

• vlserver marks fileserver
as rxgk capable

• fileserver may also
register rxgk server key

cache
manager

fileserver

ptservervlserver

implementation

abstraction

• Lots of places assume rxkad keys

• Lots of places contain duplicated code to initialise, and
accept, rxkad tokens and keys

• Unify all of these into single functions in libauth

• In 1.5.x series now

code cleanup

#define u (*(get_user_struct()))
is just plain evil...

tokens

• kernel token storage, and interface pioctls assume rxkad

• New expanded pioctl interface from Arla, and prototyped
in rxk5

• Mechanism agnostic token storage, and pioctls,
implemented as part of rxgk work

• In the new-tokens branch of YFS’s github, queued for
inclusion after 1.6

xdr

• OpenAFS’s XDR was an interesting mixture of vendor and
local code (sometimes in the same process!)

• Unify on using our own XDR routines everywhere

• Add support for xdr_free()

• Fix xdr_mem and add xdr_len mechanisms

• All applied to the 1.5.x series

crypto

“leave cryptography to
the cryptographers”

crypto

• Use an external crypto library wherever possible
• Heimdal’s hcrypto
• OpenSSL
• Mozilla NSS

• Hardware acceleration support will “Just Work”

• Use Heimdal’s RFC3961 implementation when crypto
library doesn’t offer its own

crypto

• Different rules apply for kernel code
• Some kernels have no crypto
• Others won’t let us use the crypto they have

• Local import of hcrypto
• Build system tailored for kernel use

• Same Heimdal-derived 3961 library as used in userspace

deployment

1: deploy rxgk capable clients

• rxgk clients won’t do anything differently in cells without
rxgk support

• Safe to deploy them first

2: upgrade database servers

• rxgk requires new ptserver and vlserver
• ptserver for support of GSSAPI name types
• vlserver for rxgk capability flags, and negotiation service

• New servers must be deployed to all Ubik replication sites
before new features can be used

• It may be possible to build test instances without
requiring new dbservers, but production use will require
them.

3: register GSSAPI names in ptserver

• Register GSSAPI names for all rxgk users in the ptserver

• Will automatically happen for Kerberos

• Other GSSAPI mechanisms will require per-site scripting
(we don’t know what form your X509 names take!)

4: Create rxgk service key

• rxgk uses a cell-wide service key for token encryption.

• This must be replicated between all database servers,
and all non-departmental fileservers

5: Create rxgk GSSAPI key

• rxgk uses the GSSAPI identity
afs-rxgk@_afs.<cellname>

• Key material for this identity must be available to all
database servers

6: Bring up rxgk capable fileservers

• Install the rxgk service key

• Restart the fileserver

• NB: Downgrading the fileserver requires administrator
intervention

7: delete the old afs/cell key

• Once all clients, and all fileservers are rxgk capable ...

• Remove the old rxkad afs/cell key

• Downgrade attacks are, sadly, unavoidable whilst this key
is still present

Questions
(internet willing)

