

Use of AFS in the nanoCMOS project

1935

Christopher Bayliss <u>c.bayliss@nesc.gla.ac.uk</u>

- Designing > 40n-10n scale CMOS circuits.
 - EPSRC funded project.
 - 6 Academic and 6 Industrial partners.
- Simulates CPUs from transistor up.
 - Based on transistor and circuit designs from industrial partners.
- <u>www.nanocmos.ac.uk</u>

7

Potential and dopant position of a statistically-rare device.

Threshold voltage variation as a function of the number of dopants.

- Still in development
- Running small device simulations on internal and partner clusters.
 - NGS deployment in testing.
- Non-developer users soon.

nanoCMOS

- A grid project
 - x509 certificates
 - GSI proxies
 - SOAP / HTTP
 - Globus / OMII
 - Required for NGS access.
 - Ideological attachment to grid solutions.
- Uses the Virtual Organisation model.
 - No overarching organisation.
 - Set of subsets
 - Lots of administrative boundaries.

- Common pattern
 - User creates proxy certificate
 - Proxy used to access service
 - Service accesses user's resources.
- Traditionally x509 certificates and GSI proxy certificates.
 - Users have problems with them
 - Complications with CAs
- Kerberos friendlier.
 - Built in or easily available support.
 - Many apps support it.
 - Drop to PAM when not natively supported.

Why choose AFS?

- Need for some form of distributed storage.
 - Secure
 - -WAN
- Initial options AFS, SRB and custom code.
 - Those that had used it said SRB was horrible.
 - We liked the idea of a conventional file system.
 - We had some AFS expertise on the project.
 - Two sites run AFS cells.
 - BaBar tried this before.
- According to my email first suggested Oct 2007 as part of some other work.

Heterogeneous with a capital H

- 6 academic partners
 - No policies governing HW or SW.
- Using 3rd party compute resources.
 - No common job submission.
 - No common software environment.
 - No common architecture.
- Uses purchased and "acquired" equipment.

What does nanoCMOS use AFS for?

- Hosting:
 - Input data
 - Simulation software
 - Authentication tools
 - User space
- Storage for:
 - Simulation log files.
 - Simulation results.
 - Individual user accounts.

Current AFS infrastructure

- One AFS cell.
 - NESC.GLA.AC.UK
 - Hosted at NeSC Glasgow
 - 2x Sun 12TB X4500
 - 407GB currently in use
 - Solaris
 - ZFS
 - SMF management scripts
 - Currently OpenAFS 1.4.10
- Kerberos cell.
 - Also at NeSC.
 - Single master / slave pair.
- GSSklog

The Cell

Thursday, 4 June 2009

- Users have ssh access to an AFS client
 - Play around without installing.
 - Can push / pull files straight away.

Thursday, 4 June 2009

Where?

Client deployments

- Windows, OS X and Linux clients
- Clients on developer's systems at all 6 sites.
- Clients installed on 5 clusters.
 - EE at Glasgow 145 nodes [1160 cores]
 - ScotGrid at Glasgow 309 nodes [1916 cores]
 - NeSC test cluster at Glasgow 14 nodes [28 cores].
 - Manchester 48 nodes [256 cores]
 - Edinburgh 246 nodes [1456 cores]

Thursday, 4 June 2009

Issues

- The batch systems we use have x509 based authentication.
 - No Kerberos on the worker.
 - GSSklog stored in the cell readable by anyuser
- Admins not expecting to let a UDP protocol through their firewall.
 - Shouting / Patience.

20

- tcpdump

Getting AFS installed

- Most clusters complex and fragile
 - Multiple submission mechanisms
 - Multiple users
 - Differing and conflicting needs.
 - Heavily loaded
- Admins do not like the words kernel, firewall or reboot.
 - A constant stream of 30 day jobs on some workers.

- Bursty load
 - x000 jobs reading and writing from the same file, directory or volume.
- Many clients.
 - 5000 cores available on partner clusters. ~8000 when primary NGS sites included.
- Capacity
 - Users with dozens of 1GB files to store.
- No metadata
 - Built own metadata service
- Directory permissions

- The network is outside our control.
 - Debugging connectivity issues is painful and slow.
- Most clusters outside our control.
 - Must ask local admins nicely to add or fix AFS.
 - Must work through local nanoCMOS people.
- Most clients outside our control.
 - Random versions of AFS on a random OS.
 - Homogenisation not an option.

- Allows us to bypass staging data and executables to nodes.
 - Can be a real problem on the NGS for several reasons.
 - pre-WS GRAM job submission.
 - Unreliable environment at sites.
- PAGsh
 - Useful when running jobs on a shared cluster node.
- Easier to set up than equivalent NFSv4
- Kerberos useful for services other than AFS.

Good aspects of AFS

@SYS

– We run a lot of code from AFS.

Bad aspects of AFS

- Requires kernel module.
 - Not easy thing to get system admins to install.
- Debugging
 - Either no information or too much
- NAT
 - Fiddly to set up.
 - Almost all clusters use NAT.
- Not simple to modify client config.
 - You can't simply make changes to the config and restart afsd.
 - Can't modify client if you need some setting
 - Currently test then continue / quit.

- Users understand passwords
- Can use Kerberos for other services.
 - Currently ssh with forwarding.
- Create users with expired passwords.
 - If they can log in and change their password they probably set it up OK.

- GSSAPI authentication.
- Better NAT behaviour.
- Better out of the box settings.
 - Especially for clients.
- Single cache on a cluster.
 - Save bandwidth on parameter sweep jobs.
- Consistent command line parameters

- Starting to be used for data for other projects from other departments.
 - We need somewhere to store data that isn't a drawer of USB keys.
- Quick way to backup data from servers.

Future AFS usage in nanoCMOS

- Improve server design.
- Probable move to storing cell and realm details in DNS
 - Centralise configuration somewhere we control.

- Global file space simplifies user's problems
 - Put data onto AFS from desktop
 - Copy paths into job
 - Retrieve data from path specified on desktop.