
20080522 AFS & Kerberos Best Practice Workshop 1

Hartmut Reuter
reuter@rzg.mpg.de

AFS + Object Storage

Rainer Többicke, CERN, Switzerland
Andrei Maslennikov, Ludovico Giammarino, Roberto Belloni, CASPUR, Italy

Hartmut Reuter, RZG, Germany

20080522 AFS & Kerberos Best Practice Workshop 2

The Bad News: Our good friend MR-AFS passed away

We were the last site using it. After 14 years on March 8 the last server was shut down

20080522 AFS & Kerberos Best Practice Workshop 3

Now the Good News

● OpenAFS + Object Storage has replaced MR-AFS at RZG

– It is in full production and offers similar features as MR-AFS did

● It brings HSM (Hierarchical Storage Management) to OpenAFS

– It makes AFS scale better for high throughput

– It offers better performance for high speed clients and large files

– It has some extra goodies to analyze volumes and files and make
administration of the cell easier

– It behaves like „classical“ OpenAFS for volumes without „osd“ flag.

20080522 AFS & Kerberos Best Practice Workshop 4

Overview

● What is Object Storage?

● OpenAFS + Object Storage - a R&D project sponsored by CERN and ENEA

● The implementation

● Results from the March 2007 test campaign at CERN

● The current version OpenAFS-1.4.7-osd

– New commands and subcommands related to object storage

– Backup strategies for OpenAFS + Object Storage

– Hierarchical Storage Management (HSM) for AFS

– Other goodies

● The future

20080522 AFS & Kerberos Best Practice Workshop 5

What is object storage

● Object storage systems are distributed filesystems which store data in object
storage devices (OSD) and keep metadata in metadata servers.

● Access on a client to a file in object storage consists in the following steps:

– directory lookup of the file

– rpc to metadata server which checks permissions and returns for each
object the file consists of a special encrypted handle.

– rpc to the OSDs to read or write objects using the handle obtained from
the metadata server

● The OSD can decrypt the handle by use of a secret shared between OSD
and metadata server. The advantage of this technique is that the OSD
doesn't need any knowledge about users and access rights.

● existing object storage systems claim to follow the SCSI T10 standard

– SCSI because there was hope to integrate the OSD logic into the disk
firmware

20080522 AFS & Kerberos Best Practice Workshop 6

Object Storage Systems

● The most popular object storage systems are Lustre and Panasas

● Compared to parallel filesystems such as GPFS the advantage of object
storage is

– clients cannot corrupt the filesystem

– permission checks are done on the metadata server not on the client.

● Disadvantages of today's object storage systems

– limited number of platforms (Lustre: only Linux, Panasas: ?)

– no world-wide access to data in object storage (only a cluster filesystem)

20080522 AFS & Kerberos Best Practice Workshop 7

The T10 standard

● T10 Technical Comitee on SCSI Storage Interfaces defines standards for SCSI
commands and devices. Two subgroups are workig on object storage:

– Object-Based Storage Device Commands (OSD)

– Object-Based Storage Devices - 2 (OSD-2)

● There have been published some drafts about the OSD-standard which we read and
analyzed. As far as possible we tried to follow these standards:

– For each object

● 64-bit object-id we use vnode, uniquifier, and tag (NAMEI inode)
● 64-bit partition-id we use the volume-id of the RW-volume

– A data structure “cdb” is used in SCSI commands to OSDs.

● we use a sub-structure of it to transport the encrypted object-handle
● It turned out that the T10 standard is not rich enough to support full AFS semantic

– link counts for objects needed for volume replication are missing

– the security model is too weak for insecure networks

20080522 AFS & Kerberos Best Practice Workshop 8

Why AFS and Object Storage can easily go together

● AFS infra-stucture has already many components necessary for good object storage.

– central user authentication and registration

– AFS fileserver could act as OSD-metadata server allowing for better scalability
than in other object storage systems.

– OSDs for AFS could use rx-protocol and NAMEI-partitions, both components
available for all platforms.

● Use of OSDs can

– remove 'hot spots' in very active volumes by distributing data over many OSDs

– increase peak performance by striping of files (HPC environment)

– allow for RW-replication by use of mirrored objects

– offer HSM functionality in AFS

● Implementing object storage in the AFS environment would allow to use objects
storage on any platform (not just Linux) and to use it world wide.

20080522 AFS & Kerberos Best Practice Workshop 9

 The R&D Project “OpenAFS + Object Storage“

● In 2004 Rainer Többicke from CERN implemented a first version of AFS
with object storage as a proof of concept. It was tested at the CASPUR
StorageLab in Rome.

– However, Rainer couldn't find the time to develop his idea any
further

● In 2005 Andrei Maslennikov from CASPUR managed to bring the
interested institutions and persons together to form a real project.

– Design decisions were made on a meeting at CERN

– Funds were raised from CERN, and ENEA to hire two system
programmers to work at CASPUR

● Most of the development was actually done at RZG because there was
the most experience with the AFS source.

● In 2007 the „official“ project ended with a week of tests at CERN.

● Since then RZG has continued to implement all what was needed to
replace MR-AFS

20080522 AFS & Kerberos Best Practice Workshop 10

Implementation: The Components
● „rxosd“ the object storage device (OSD) used for AFS

– that's where the data are stored. Works on NAMEI partitions.

– RPC-interface used by client, fileserver, volserver, archival rxosd and osd-command

● „osddb“ a ubik-database (like vldb) describing

– OSDs

– policies to be used in different AFS volumes for allocation of files in object storage.

● AFS-fileserver, acting as metadata-server

– metadata are stored in a new volume-special file

– extensions also to volserver and salvager

● AFS-client has been restructured to allow for multiple protocols

– got the ability to store and fetch data directly from OSDs

● Legacy-interface

– to support old clients

– to allow move of volumes which use object storage back to “classic” fileservers

20080522 AFS & Kerberos Best Practice Workshop 11

How does it work

● In struct AFSFetchStatus the unused SyncCounter is replaced by Protocol

– Protocol is set to RX_OSD when it is a file in object storage.

– This information is copied into vcache->protocol.

● When such a file is going to be fetched from the server the client

– does a RXAFS_GetOSDlocation RPC to the fileserver

– With the information returned the client can do a RXOSD_read RPC to the OSD.

● Before a new file is stored the first time the client does a RXAFS_Policy RPC.

– If the volume has the osdflag set the fileserver tries to find an appropriate OSD

– Sophisticated policies are not yet implemented. Therefore the fileserver decides only
based on the the file size.

– The fileserver deletes the inode and allocates instead an object on an OSD.

● When RXAFS_Policy has returned protocol == RX_OSD the client

– calls RXAFS_GetOSDlocation and then use RXOSD_write to store the data.

20080522 AFS & Kerberos Best Practice Workshop 12

Example: reading a file in OSD

osddb fileserver

1

osd

osd

osd

osd

The fileserver gets a list of osds from the osddb (1).
The client knows from status information that the file
he wants to read is in object storage. Therefore he
does an rpc (2) to the fileserver to get its location and the
permission to read it. The fileserver returns an encrypted
handle to the client. With this handle the client gets the
data from osd (3).

client

2

3

20080522 AFS & Kerberos Best Practice Workshop 13

Example: writing a file into OSD

osddb fileserver

1

osd

osd

osd

osd

The fileserver gets a list of osds from the osddb (1).
The client asks (2) the fileserver where to store the file
he has in his cache. The fileserver decides following
his policies to store it in object storage and chooses
an osd. He allocates an object on the osd (3).
The client asks for permission and location of the object (4)
getting an encrypted handle which he uses to store the data in the osd (5).
Finally afs_StoreMini informs the fileserver of the actual length of the file (6).

client

2

5

3
4 6

20080522 AFS & Kerberos Best Practice Workshop 14

• Data are stored in objects inside OSDs.

– simplest case: one file == one object

Object

OSDs

Describing a file:

20080522 AFS & Kerberos Best Practice Workshop 15

● Data of a file could be stored in multiple objects allowing for
– data striping (up to 8 stripes, each in a separate OSD)

– data mirroring (up to 8 copies, each in a separate OSD)

Objects

OSDs

Describing a file:

20080522 AFS & Kerberos Best Practice Workshop 16

● To a file existing on some OSDs later more data could be
appended. The appended data may be stored on different OSDs (in
case there is not enough free space on the old ones)

– This leads to the concept of segments

– The appended part is stored in objects belonging to a new
segment.

Objects + Segments

OSDs

Describing a file:

20080522 AFS & Kerberos Best Practice Workshop 17

● The whole file could get a copy on an archival OSD (tape, HSM)

– This leads to the concept of file copies

Objects + Segments + File Copies

Archival OSD

Describing a file:

20080522 AFS & Kerberos Best Practice Workshop 18

● The vnode of an AFS file points to quite a complex structure of osd metadata:

– Objects are contained in segments

– Segments are contained in file copies

– additional metadata such as md5-checksums may be included.

● Even in the simplest case of a file stored as a single object the whole hierarchy (file copy, segment,
object) exists in the metadata.

● The osd metadata of all files belonging to a volume are stored together in a single volume special file

– This osdmetada file has slots of constant length which the vnodes point to

– In case of complicated metadata multiple slots can be chained

– The osd metadata are stored in network byte order to allow easy transfer during volume move or
replication to other machines.

The complete osd metadataDescribing a file:

20080522 AFS & Kerberos Best Practice Workshop 19

osd metadata in memory

● These structures are serialized in net-byte-order by means of rxgen-created xdr-
routines into slots of the volume special file “osdmetadata”.

len val

osd_p_fileList

archvers archtime spare len val len val

osd_p_file segmList metaList

length offset stripes stripesize copies len val

osd_p_segm objList

obj_id part_id osd_id stripe

osd_p_obj

● In memory the file is described by a tree of
 C-structures for the different components

osd_p_meta

Describing a file:

20080522 AFS & Kerberos Best Practice Workshop 20

Example for OSD metadata
● The new „fs“-subcommand „osd“ shows the OSD-metadata of a file.

– The 1st entry describes the actual disk file (its length is taken from the vnode)

– the 2nd and 3rd entries describe archival copies with md5-checksums

– The on-line file has been restored from the second archive on April 1.

 > fs osd mylargefile.tar
 mylargefile.tar has 436 bytes of osd metadata, v=3
 On-line, 1 segm, flags=0x0
 segment:
 lng=0, offs=0, stripes=1, strsize=0, cop=1, 1 objects
 object:
 obj=1108560417.96.161157.0, osd=8, stripe=0
 Archive, dv=67, 2008-03-19 12:17:23, 1 segm, flags=0x2
 segment:
 lng=2307727360, offs=0, stripes=1, strsize=0, cop=1, 1 objects
 object:
 obj=1108560417.96.161157.0, osd=5, stripe=0
 metadata:
 md5=6e71eff09adc46d74d1ba21e14751624 as from 2008-03-19 13:43:56
 Archive, dv=67, 2008-03-19 13:43:56, 1 fetches, last: 2008-04-01, 1 segm, flags=0x2
 segment:
 lng=2307727360, offs=0, stripes=1, strsize=0, cop=1, 1 objects
 object:
 obj=1108560417.96.161157.0, osd=13, stripe=0
 metadata:
 md5=6e71eff09adc46d74d1ba21e14751624 as from 2008-03-24 02:15:27
 >

20080522 AFS & Kerberos Best Practice Workshop 21

~: osd l
 id name(loc) ---total space--- flag prior. own. server lun size range
 1 local_disk wr rd (0kb-1mb)
 4 raid6 4095 gb 68.4 % up arch 70 64 afs15.rz 0 (1mb-8mb)
 5 tape 7442 gb 31.3 % up arch 64 30 styx.rzg 0 (1mb-100gb)
 8 afs16-a 4095 gb 84.8 % up hsm 80 80 afs16.rz 0 (1mb-100gb)
 9 mpp-fs9-a 11079 gb 4.5 % up hsm 80 80 mpp mpp-fs9. 0 (1mb-100gb)
 10 afs4-a 4095 gb 85.0 % up hsm 80 80 afs4.bc. 0 (1mb-100gb)
 11 w7as(hgw) 2721 gb 61.9 % up 65 80 afs-w7as 0 (1mb-9gb)
 12 afs1-a 1869 gb 39.8 % up 70 70 afs1.rzg 0 (1mb-100gb)
 13 hsmgpfs 3139 gb 56.6 % up arch 50 32 tsm.rzg. 12 (8mb-100gb)
 14 afs6-a 1228 gb 79.1 % up hsm 72 72 toc afs6.rzg 0 (8mb-100gb)
 17 mpp-fs8-a 2047 gb 15.6 % up hsm 80 80 mpp mpp-fs8. 0 (1mb-100gb)
 18 mpp-fs3-a 2047 gb 77.6 % up hsm 80 80 mpp mpp-fs3. 0 (1mb-100gb)
 19 mpp-fs10-a 5552 gb 13.8 % up hsm 80 80 mpp mpp-fs10 0 (1mb-100gb)
 20 sfsrv45-a 329 gb 10.3 % up 32 64 sfsrv45. 0 (1mb-8mb)
 21 sfsrv45-b 923 gb 6.4 % up 32 64 sfsrv45. 1 (8mb-10gb)
 22 mpp-fs2-a 2047 gb 79.4 % up hsm 80 80 mpp mpp-fs2. 0 (1mb-100gb)
 23 mpp-fs11-a 6143 gb 0.6 % up hsm 80 80 mpp mpp-fs11 0 (1mb-100gb)
 24 mpp-fs12-a 6143 gb 0.0 % up hsm 80 80 mpp mpp-fs12 0 (1mb-100gb)
 25 mpp-fs13-a 6143 gb 0.0 % up hsm 80 80 mpp mpp-fs13 0 (1mb-100gb)
 26 afs0-a 1862 gb 85.0 % up hsm 80 80 afs0.rzg 0 (1mb-100gb)
 27 afs11-z 1861 gb 84.8 % up hsm 80 80 afs11.rz 25 (1mb-100gb)
 32 afs8-z 1023 gb 80.0 % up hsm 79 80 afs8.rzg 25 (1mb-100gb)
~:

The „osddb“ data base
The „osddb“ database contains entries for all OSDs with id, name, priorities, size ranges ...

The filesystem parameters are updated every 5 minutes by the OSDs.

OSD 1 is a dummy used by the default policy to determine maximum file size in filserver partition

20080522 AFS & Kerberos Best Practice Workshop 22

Why use OpenAFS + Object Storage?

● if thousands of clients access files in different volumes on different servers

– Student's home directories distributed over many servers accessed from slow clients

● when thousands of clients access files in the same RW-volume

– Huge software repositories in batch environments (CERN)

– Distributing files over many OSDs can help.

● It doesn't scale when fast clients read large files

– Striping files over multiple OSDs can help

● It doesn't scale when mutliple clients read the same large files

– Multiple copies of the files on different OSDs can help

If you have large infrequently used files HSM functionality would be nice

– Long time preservation of photos, audio- and video- data or raw data from experiments

– Archival OSDs make data migration into underlying HSM system possible.

OpenAFS doesn't really scale

OpenAFS scales very well

20080522 AFS & Kerberos Best Practice Workshop 23

Simple Example

Huge volumes:
 Classical OpenAFS OpenAFS + Object Storage

● Same amount of disk space, but split between fileserver partition (lower piece) and
object storage (upper piece).

– Load to servers is balanced even if only red volume is presently used

– Huge volumes can still be moved or replicated

20080522 AFS & Kerberos Best Practice Workshop 24

CERN Tests: Read/Write 50 clients, variable number of OSDs
● The diagram shows that the total throughput to a single AFS volume scales with the

number of OSDs used.

– the traffic is distributed equally over the OSDs

– The order of read and write guaranteed that the files to be read could no be in the
client's cache.

– Total network traffic on OSDs were measured in steady-state.

– Values for 6 and 7 OSDs are missing (NFS problem when writing the log!)

– Each new OSD contributes ~46 MB/s as long as the metadata server (fileserver) is
not the bottle-neck.

1 OSD 2 OSDs 3 OSDs 4 OSDs 5 OSDs 6_OSDs 7 OSDs 8 OSDs
0

50

100

150

200

250

300

350

400

osd_8
osd_7
osd_6
osd_5
osd_4
osd_3
osd_2
osd_1

Total Throughput (read+write) MB/s

20080522 AFS & Kerberos Best Practice Workshop 25

● Normal AFS file (left column)

– The normal file read can use full bandwidth because disk I/O doesn't play a role.

● Mirorred file in 7 OSDs (right column)

– Of course, writing the file was slower than writing a simple file.

– The diagam shows that not all copies are accessed equally (osd_2 much less)

● Total throughput on clients was 518 MB/s for the mirrored file!

CERN Tests: 50 clients reading the same 1.3 GB file

Normal Fileserver Mirrored OSDs
0

100

200

300

400

500

600

osd_7
osd_6
osd_5
osd_4
osd_3
osd_2
osd_1

Total read throughput MB/s

20080522 AFS & Kerberos Best Practice Workshop 26

● This test simulates the access pattern to the ATLAS LCG software volume at CERN.

– the 50 GB rw-volume has > 700,000 small files and 115,000 directories

– nearly all acceses are “stat” or “read” with 10 times more “stat” than “read” .

● The contents of the volume was copied twice into the test cell

– 1st copy normal AFS volume (left column)

– 2nd copy all files distributed to 8 OSDs (right column)

● scripts running in parallel with random access to files and directories 10 times more
“stat” than “read“

CERN Tests: ~120 clients reading randomly in large RW-volume

Normal volume All files in OSD
0

5

10

15

20

25

30

35

40

45

osd_8
osd_7
osd_6
osd_5
osd_4
osd_3
osd_2
osd_1

Total read throughput MB/s

20080522 AFS & Kerberos Best Practice Workshop 27

New command: „osd“

This administrator command is used to manage OSDs and check their content

Some sub-commands:

– list list OSDs in the database

– add make new OSD entry in the database

– set change existing OSD entry in the database

– volumes list all volumes which have data in an OSD

– objects list all objects in an OSD belonging to a volume

– examine details of an object (size, time, link count ...)

– increment increase link count of an object

– decrement decrease link count of an object

– wipecandidates list objects which have not been used for a long time

– md5sum make md5 checksum of an object and display it

– threads show currently active RPCs on an OSD

20080522 AFS & Kerberos Best Practice Workshop 28

Additions for „vos“

● small additions

– “vos dump -metadataonly” dumps only directories and osd metadata. To be used
dumptool to identify objects

– “vos dump -osd” includes data on OSDs in the dump (not useful in
HSM environment!)

– „vos setfields -osdflag“ sets the osdflag (otherwise OSDs will not be used).

● new subcommands

– archcand lists the oldest OSD-files without archive copy.
Used in scripts for automatic archiving.

– listobjects lists objects on a specified OSD for the whole server
or a single volume

– salvage checks (and repairs) link counts and sizes

– spiltvolume splits large volume at subdirectory

– traverse creates file size histogram and more

„vos traverse“ File Size Histogram of cell ipp-garching.mpg.de

 File Size Range Files % run % Data % run %
 --
 0 B - 4 KB 51797725 50.70 50.70 64.326 GB 0.03 0.03
 4 KB - 8 KB 8166414 7.99 58.69 44.530 GB 0.02 0.05
 8 KB - 16 KB 7353734 7.20 65.89 78.435 GB 0.03 0.08
 16 KB - 32 KB 7794417 7.63 73.52 163.583 GB 0.07 0.16
 32 KB - 64 KB 6593297 6.45 79.97 303.268 GB 0.13 0.29
 64 KB - 128 KB 4546816 4.45 84.42 403.482 GB 0.18 0.47
 128 KB - 256 KB 3316311 3.25 87.67 587.553 GB 0.26 0.73
 256 KB - 512 KB 3468586 3.39 91.06 1.188 TB 0.54 1.27
 512 KB - 1 MB 2460819 2.41 93.47 1.612 TB 0.73 2.00
 1 MB - 2 MB 1631370 1.60 95.07 2.258 TB 1.03 3.03
 2 MB - 4 MB 1535422 1.50 96.57 3.977 TB 1.81 4.84
 4 MB - 8 MB 1328764 1.30 97.87 6.973 TB 3.17 8.01
 8 MB - 16 MB 737305 0.72 98.59 7.914 TB 3.60 11.60
 16 MB - 32 MB 508383 0.50 99.09 10.500 TB 4.77 16.37
 32 MB - 64 MB 367269 0.36 99.45 15.246 TB 6.93 23.30
 64 MB - 128 MB 241509 0.24 99.68 20.205 TB 9.18 32.48
 128 MB - 256 MB 121515 0.12 99.80 20.996 TB 9.54 42.02
 256 MB - 512 MB 77494 0.08 99.88 28.404 TB 12.91 54.93
 512 MB - 1 GB 112096 0.11 99.99 76.463 TB 34.74 89.67
 1 GB - 2 GB 8735 0.01 100.00 12.161 TB 5.53 95.19
 2 GB - 4 GB 1705 0.00 100.00 4.399 TB 2.00 97.19
 4 GB - 8 GB 374 0.00 100.00 2.297 TB 1.04 98.24
 8 GB - 16 GB 121 0.00 100.00 1.236 TB 0.56 98.80
 16 GB - 32 GB 57 0.00 100.00 1.183 TB 0.54 99.34
 32 GB - 64 GB 27 0.00 100.00 1.159 TB 0.53 99.86
 64 GB - 128 GB 4 0.00 100.00 308.307 GB 0.14 100.00
 --
 Totals: 102170269 Files 220.094 TB

93 % of
all files < 1MB

99,4 % of
all files < 64MB

220 TB

51.3 TB

4.4 TB

„vos traverse“ Storage Usage

 Storage usage:

 1 local_disk 99412884 files 44.564 TB
 arch. Osd 4 raid6 960456 objects 2.735 TB
 arch. Osd 5 tape 2753493 objects 175.209 TB
 Osd 8 afs-16-a 26426 objects 3.388 TB
 Osd 9 mpp-fs9-a 1192 objects 299.083 GB
 Osd 10 afs4-a 28917 objects 3.375 TB
 Osd 11 w7as 96129 objects 1.610 TB
 Osd 12 afs1-a 236967 objects 793.564 GB
 arch. Osd 13 hsmgpfs 173195 objects 25.326 TB
 Osd 14 afs6-a 5686 objects 922.579 GB
 Osd 17 mpp-fs8-a 421 objects 125.001 GB
 Osd 18 mpp-fs3-a 13766 objects 1.138 TB
 Osd 19 mpp-fs10-a 1483 objects 297.979 GB
 Osd 20 sfsrv45-a 4141 objects 11.650 GB
 Osd 21 sfsrv45-b 154 objects 47.705 GB
 Osd 22 mpp-fs2-a 4600 objects 1.566 TB
 Osd 23 mpp-fs11-a 518 objects 58.605 GB
 Osd 24 mpp-fs12-a 292 objects 32.958 GB
 Osd 25 mpp-fs13-a 107 objects 7.925 GB
 Osd 26 afs0-a 12090 objects 1.543 TB
 Osd 27 afs11-z 8968 objects 1.495 TB
 Osd 32 afs8-z 9743 objects 793.148 GB

 Total 103751628 objects 265.270 TB

20080522 AFS & Kerberos Best Practice Workshop 31

Additions for „fs“

 Some new subcommands (mostly for administrators)

– ls like “ls -l”, but differentiates between files, objects, and wiped objects

– vnode shows the contents of a file's vnode.

– fidvnode as above, but on “fid“. Shows also the relative AFS path inside volume.

– [fid]osd shows OSD metadata of an OSD-file

– [fid]archive generates a copy on an archival OSD. The md5 checksum is saved
in the osd metadata

– [fid]replaceosd moves an object from one OSD to another (or from local disk to OSD,
or from an OSD to local disk, or removes a copy on an OSD)

– [fid]wipe erases the on-line copy if file has good archive copy.

– translate translates NAMEI-path to fid and shows relative AFS path inside the volume

– threads shows active RPCs on the fileserver

– protocol turns OSD usage on/off in the client

– listlocked shows locked vnodes on the fileserver

– createstripedfile preallocates striped and/or mirrored OSD file

20080522 AFS & Kerberos Best Practice Workshop 32

Backup Strategies

● Classical Backup

– Volumes using object storage can be backed up by „vos dump“

– The dumps do not contain the object's data, only their metadata.

● Backup by volume replication to another server for later use with „vos convertROtoRW“

– The RO-volumes are just mirrors of the RW-volumes and don't contain the object's data

● Both techniques do not protect data in OSDs. Therefore files in object storage need to be
backed up separately:

– Have „archival“ OSDs (either on disk or in HSM systems with tape robots)

– Run an “archive” script as instance on the database servers which calls

● „vos archcand ...“ to extracts list of candidates from the fileservers

● „fs fidarchive ...“ to create the archival copy of the files on an archival OSD

– metadata of the archival copies are stored in the volume along with md5-checksums

20080522 AFS & Kerberos Best Practice Workshop 33

HSM functionality for AFS

● Now that we have „archival“ copies - why not use them to obtain HSM-functionality?

● We run a “wiper” script as instance on the database servers which

– checks disk usage with “osd list -wipeable” and when a high-water-mark is reached

– gets candidates with “osd wipecandidates ...”

– and wipes (frees) on-line version of the file in the RW-volume with „fs fidwipe ...“ .

– and at the end also in the RO-volumes by „vos release“

● About 10,000 of our 25,000 volumes use object storage

– To these volumes belong 175 TB == 80 % of the 220 TB total data

● Of these 175 TB only 16 TB == less than10 % are on-line.

● Wiped files come automatically back to disk when they are accessed

● Wiped files can be prefetched to disk by „fs prefetch ...“ to prepare for batch jobs

● The queuing of fetch requests uses an intelligent scheduler which

– Allows users to submit many requests at a time

– But lets compete always the 1st entries of all users.

● So a single request of one user can bypass a long queue of another user

20080522 AFS & Kerberos Best Practice Workshop 38

Other Goodies: „vos split“
● Splits a volume at a subdirectory without moving any data

– Just volume special files (volinfo, small and large vnode-files, osd-metadata) are
copied pointing to the same real inodes/objects.

– Real objects get hard links into the new volume's NAMEI-tree

– In the new volume all references to the part not covered by it are removed

– And in the old volume all references to files under the subdirectory

– The subdirectory is replaced by a mount point to the new volume.

● Very useful for especially for volumes containing files in HSM !

● Syntax:

vos splitvolume -id <volume name or ID>

-newname <name of the new volume>

-dirvnode <vnode number of directory where the volume should be split>

[-cell <cell name>]

● The vnode number of the subdirectory can be obtained by „fs getfid“

20080522 AFS & Kerberos Best Practice Workshop 39

More Goodies: „afsio“

This command can be used to write and read files bypassing the cache manager

Subcommands:

– read reads AFS-file (normal or OSD) and writes result to stdout

– write reads from stdin and writes AFS-file (normal or OSD)

– append as write, but as name says, append

– fidread as read, but with „fid“ instead of path

– fidwrite ...

– Fidappend ...

Note: you still need an AFS-client to locate the file and the fileserver.

“afsio” is heavily used at the AUG experiment at IPP Garching to copy large files from the
data acquisition systems into AFS

20080522 AFS & Kerberos Best Practice Workshop 40

When should you use OpenAFS + Object Storage?

● Without HSM system in the background

– you can get better throughput for data in volumes which cannot be replicated

● Object storage distributes the data equally over many OSDs

● Striping distributes load even for single large files

● Mirroring useful for data that are much more often read then written

● With a HSM system

– You can get HSM functionality for AFS

● Infrequently used data go on secondary storage

– Archival copies of files in object storage as backup solution along with RO-volumes
for small files and directories

20080522 AFS & Kerberos Best Practice Workshop 42

Future Development

● Felix Frank at DESY Zeuthen in Germany is working on the policies.

– The policies will control

● which files go into object storage (based on name and size)

● how they should be striped or mirrored and into which OSDs they should go

– The policies will be stored in the osddb and the directory vnodes will contain the
policy number to apply for files in this directory.

● Other work will continue to be done at RZG.

20080522 AFS & Kerberos Best Practice Workshop 43

● Next step must be to bring the code into the OpenAFS CVS tree.
– This had been promised already a year ago! (I understand: it is a lot of work)

– Once it's there it will take certainly a while until it appears in the official stable releases.
(For large file support it took 3 years!)

The current code can be found under

To build it with object storage you need to configure it at least with

Without „--enable-object-storage“ you should get a „classical“ OpenAFS with some of the goodies
mentioned before.

Disclaimer: This code still may have some bugs!

– If configured with “--enable-object-storage” you have to move volumes to such a server, don't
start it on partitions with volumes created with “classical” OpenAFS (changes in vnode and
volume structures)

 /afs/ipp-garching.mpg.de/common/soft/openafs/openafs-1.4.7-osd

Testers are invited

 configure --enable-object-storage --enable-namei-fileserver

20080522 AFS & Kerberos Best Practice Workshop 44

Someone here who wants to replace me when I retire next year?

Last Question

● Interesting work (cell administration and AFS development)

● RZG is one of the leading supercomputer centers in Europe

● Garching near Munich is situated in the nice Bavarian landscape

– remember the famous Biergärten and Oktoberfest

– and the Alps and lakes near by

