
Reconnecting Disconnected AFS	

Simon Wilkinson <simon@sxw.org.uk>
School of Informatics, University of Edinburgh

The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336.

mailto:simon@sxw.org.uk
mailto:simon@sxw.org.uk

Introduction

• History

• Overview, and introduction to the cache manager

• Code Archaelogy

• Implemenation

• Future directions

History

• Disconnected AFS was originally implemented by a group
at the University of Michigan against the Transarc AFS
codebase

• Their implementation is documented in
L.B. Huston, and P. Honeyman. “Disconnected Operation for AFS”, Proceedings of the
USENIX Mobile and Location- Independent Computing Symposium, August, 1993
http://www.citi.umich.edu/techreports/reports/citi-tr-93-3.ps.gz

http://www.citi.umich.edu/techreports/reports/citi-tr-93-3.ps.gz
http://www.citi.umich.edu/techreports/reports/citi-tr-93-3.ps.gz

General Principles

• Use the data in the client’s cache to allow a client to
continue to work when it loses access to the fileservers

• Record any changes that the client makes whilst offline

• Replay these changes to the server when the client
comes back online

The cache manager from a million feet

• A very high level idea of what’s going on in the cache
manager helps when explaining the issues

• This is is a very rough overview. It’s very high level, and
contains a number of white lies.

Files, directories and vnodes

• A vnode is the kernel structure that represents an object
(either a file, or a directory)

• Defined by the core kernel - AFS adds some additional
entries

• I’ll talk mainly about files - feel free to substitute

• On Linux the vnode belongs to the kernel, not the
filesystem module.

Caches I

• The client actually maintains a number of different caches

• DCache
• The dcache contains data for files you have accessed
• Files are split into multiple chunks
• Cache can be either disk or memory backed. Disk backed

caches persist across reboots

• VCache
• The vcache contains file metadata
• Held in memory
• Entries for a file may exist in the dcache, but not in the vcache

Caches II

• volume cache
• Maintains details of visited volumes
• Held in memory, but backed to disk
• Disk copy deleted on restart

• cell cache
• Memory only

• ... and some others

Archaeology	

• Derrick committed a version of the Michigan code to
OpenAFS CVS in the disconnected branch

• Severely bit rotted

• Doesn’t build - major architectural changes have
occurred since it was written

• Doesn’t implement things in the best way for the current
code base

Implementation : Take 1

• Step 1: Take Michigan code, and port to current AFS
codebase

• Step 2: Iterate step 1 in spare time for a number of
months

• Step 3: Admit defeat

Implementation : Take 2

• Start from scratch, using the Michigan code as a guide

• Initially build a read-only disconnected client
(Arla did this years ago)

• When the client’s offline, give access to data in the cache

• Deny requests
• Which require write access
• Which can’t be satisfied from the cache

• Sounds simple? Well...

Read only Implementation

• This is done, and available now

• Worth considering the issues encountered, as they’ll also
haunt the read-write implementation
• Manual connection
• Cache recency
• Locking
• Access Control
• Persistence

Manual Connection

• Require human intervention to switch state

• ‘fs discon’ command, which must be executed by root

• Have to make sure file system is quiet when this occurs!

• Doing this is perhaps less usable than automatic
switches, but it avoids significant UI problems

Cache recency

• Once a piece of data hits your cache, it stays there until
the cache fills.

• No guarantee of recency once the callback expires

• We make all files available, regardless of whether they
had a valid callback when the machine disconnected

• It’s up to user space to update all required files before it
disconnects

Locking

• Read-only usage can still result in fileserver contact

• When we’re disconnected, we can only say ‘yes’
• Can enforce locks between process on a local machine - some

platforms give us this for free.

• When we reconnect, we need to ask the fileserver for any
locks that we still expect to hold

• What do we do if it refuses?
• Invalidate the current filehandle

Access control

• When we lose the network, we lose the ability to make
fully informed access control decisions

• Two options:
• It’s your disk, you can read it, do as you like
• You can have any access that you had whilst connected

• Michigan did the first, we’re doing the second

Access control complications

• Cache manager stores previous accesses using the PAG
number

• This doesn’t persist across reboots

• Nor can you explicitly request a PAG number when you
change PAGs (because this would be a security hole)

Persistence

• Not all of the required data persists across reboots

• In order to survive reboots, we must be able to store this
data to local disk

• Some pieces of data can’t be correctly reloaded (cached
access rights, for example), and must be rewritten on
reboot.

Moving on to read write

• Dragos Tatulea is working, as part of Google Summer of
Code, on adding read write support

• Using a design thrashed out between Jeff Altman and
myself

• Differs from the original Michigan design in a number of
important ways

The original approach: journalling	

• Record every change made by a client into a journal

• When we reconnect, replay that journal back to the
fileserver

• Issues
• Duplication (entries in both the AFS cache, and the journal)
• Redundant entries (create a file, then delete, gives 2 entries)

• There was an optional journal optimiser that sought to
resolve the second issue

The new way: Utilise the cache	

• Local cache already has to store all of the information.

• Make all changes into local cache.
(Some operations currently get the fileserver to make the change, then read it back)

• Flag cache entries as being dirty (and ensure they’re
flushed to disk)

• Replay all dirty entries to the fileserver when we
reconnect. Do so with a lock on every entry we replay
(We’ll talk about conflict resolution shortly)

Issues

• No ordering

• No separation

Conflict resolution

• All this is fine when there’s only 1 client. The real world
isn’t that simple.

• We have to be able to resolve conflicts. These occur
when
• Client A goes disconnected
• Client A changes file Z (and the change is cached)
• Client B changes file Z (on the fileserver)
• Client A reconnects

• AFS data versions allow us to identify when conflicts
occur

Resolution strategies

• Many simple resolution strategies
• Server wins
• Client wins
• Last writer wins
• Ask

• Options exist for what to do with the rejected files
• Write them to local storage
• Write them to an alternate name in AFS (quota permitting)

• More complex strategies may be possible, but all require
file-specific knowledge

}dataloss!

There is no
perfect solution

... but there should be a choice of imperfect ones

Conflict resolution for directories

• As I mentioned, directories are a special kind of file

• ... but AFS knows the format of a directory, so we can
resolve many conflicts

• ... given a common ancestor

• Disconnected client needs 2 copies of modified dirs
• The current copy, that’s in active use
• The copy it had when it disconnected (the common ancestor)

More Replay Issues

• We’ve assumed a single set of tokens

• How do we handle machines with multiple users writing
with different tokens?

• Have to use multiple tokens for replay, but also know
which changes happened with which token

• It’s unlikely that there will be any movement on this, this
year.

Filesets

• We want to be able to allow the user to define things for
particular sets of files:

• Pinning - files which are to be kept in the cache so they’re
available when disconnected

• Access - whether a file should be available r/o or r/w when
disconnected

• Resolution policy - what to do should a conflict arise

Future Developments

• Automatic connection detection & per volume
disconnection
• When a volume goes away, switch to disconnected mode for

its contents
• When a volume comes back, replay any changes to it

• This raises big usability issues
• How do you notify of replay conflicts?

More Future developments

• User interface

• At the moment, there is no user interface for any of this,
beyond the ‘fs’ command

• GUIs would help, especially if we do non-commanded
connection and disconnection

• On multi-user machines, where to display the GUI is a complex
question

Trying it out

• Patch for readonly operation available now

• Dragos will be providing regular updates of the rw code

• Try it out!

• I promise I won’t eat your data... Much

Questions?

