
OpenAFS Instrumentation Framework

Tom Keiser
Sine Nomine Associates

. – p.1/22



Introduction

Project was commissioned by a client of Sine Nomine

Primary goal is to provide a universal instrumentation
framework to monitor and identify performance
bottlenecks

Development, testing, and platform porting efforts are
ongoing

Current patch against OpenAFS HEAD touches 1, 100

files, and is 127, 000 lines, and growing...

An alpha patch was committed as the
instrumentation branch of OpenAFS CVS in
01/2007

. – p.2/22



Motivating Problems

Current afs monitoring techniques are reactive

Continuous polling is required to identify system faults

Knowledge of many disparate monitoring and debugging
technologies is required

Proactive monitoring is needed to:
find and isolate faults more quickly
gather a historical record of the conditions leading up
to faults
allow for future fault data mining

. – p.3/22



Motivating Problems Part II

Current monitoring and debugging systems have races
fetching state in N unit blocks inherently racy
fetching many units of state as a single transaction is
unfair and introduces jitter into production workflows
snapshotting full system state is unacceptable due to
the required serialization and jitter

Proactive monitoring allows us to avoid bulk state
fetches by only sending state:

when interesting events happen
which is interesting to the user

. – p.4/22



A Taxonomy of Instrumentation Techniques

There are a number of important properties to consider
when designing an instrumentation system:
solicitation must telemetry be requested, or will it be

provided without solicitation?
synchronousness poll versus publish/subscribe semantics
stability is the telemetry data cacheable, or ephemeral?

put another way: does temporal correlation between
data points from the same source imply value
correlation?

. – p.5/22



Taxonomy Part II

AFS exhibits four major classes of instrumentation:
events delivery of ad-hoc state (e.g. fstrace)
queries highly-structured telemetry acquisition methods

(e.g. rxdebug, cmdebug, ...)
static statistics statistics which are statically allocated

(e.g. xstat, rx_stats, ...)
dynamic statistics statistics related to dynamic objects

(e.g. rx_conn, rx_call, and rx_peer statistics, ...)

unfortunately, there is no common framework — each
subsystem reinvents the wheel

. – p.6/22



Taxonomy Part III

Now, we can classify each of our instrumentation
classes using the previously discussed properties:
events unsolicited, asynchronous, unstable
queries solicited, synchronous, both
static statistics both, both, both
dynamic statistics both, both, unstable

bottom line: statistics are hard to classify — we can treat
stats updates as trace events, or we can poll for current
stats values on an interval

. – p.7/22



Design Goals

Support all four instrumentation classes from the
taxonomy

Minimal disabled probe overhead

Integrate seamlessly with enterprise monitoring tools

Provide linear MP scaling

Write code using extensible and pluggable APIs

Provide for distributed telemetry processing and
distributed transaction correlation

Provide a scripting language interface to lower the
barrier to entry

Combine all instrumentation into a single namespace
. – p.8/22



Existing Technologies

The chosen design borrows elements from a number of
contemporary technologies:
SNMP hierarchical namespace, agent/console

architecture, trap/get methods
Sun DTrace generator/consumer model, dynamic probe

registration, complex probe actions, and data
postprocessing/aggregation

Solaris kstat abstraction for managing and updating
statistics

z/VM per-cpu ring buffers of fixed-length trace records
AIX Trace Framework excellent example of a

developer-oriented tracing framework

. – p.9/22



Prerequisites

Before serious work on instrumentation could begin, we
needed a robust, portable runtime abstraction

Historically, DCE/DFS, and to a significantly lesser
extent, AFS, have had runtime abstractions called osi:

interfaces were sprinkled throughout the code with
seemingly little order
no naming consistency
primarily aimed at kernel code
typically valued portability over performance

From these deficiencies came the birth of libosi (the
Operating System Interface library)

. – p.10/22



OpenAFS Instrumentation

Implementation

. – p.11/22



What is libosi?

libosi provides functionality similar to APR and NSPR

Frequently, code written to libosi interfaces can be
recompiled for userspace and kernelspace without any
preprocessor ifdef’s

Provides numerous high-performance interfaces, such
as:

atomic operations
per-cpu memory
numa-aware memory pools
high-performance statistics abstractions
and quite a bit more!

. – p.12/22



Architecture

. – p.13/22



Probe Naming

Namespace closely resembles SNMP

probe names are arranged as a dot-delimited hierarchy

at present, there are 983 probes in the tree

here are some examples:
rpc.rx.conn.new

rpc.rx.srv.callQ.enqueue

vol.volume.actions.attach.begin

legacy.icl.afs_trace.CM_TRACE_STOREPROC

db.ubik.client.events.mark_server_down

srv.fs.file.CopyOnWrite

. – p.14/22



Producer/Consumer Model

We utilize an M:N producer/consumer model

Instrumented processes, and instrumented kernel
components, can emit trace data from activated probe
points

Emitted trace data is pulled out of kernel ring buffers by
consumer processes

Consumers make trace data available to:
local code written to the consumer C apis
local user-defined data postprocessing and analysis
routines
remote trace consoles via Rx
SNMP agents

. – p.15/22



Producer/Consumer Model Part II

Consumer processes perform the following chain of
operations on incoming trace data:

Trace records are queued for probe id to probe name
resolution
Local interested parties are resolved, and probe data
forwarded
Remote consoles with interest are identified
Probe data is encoded for remote transport
Traps are sent to the appropriate remote consoles

. – p.16/22



Remote Tracing

We deliver telemetry via Rx, and SNMP

Remote tracing is necessary in order to correlate events
in distributed transactions

For the sake of flexibility, we support both polling and
asynchronous trap methodologies

Asynchronous traps operate via a priori registration of
probe filter expressions, e.g:

*
srv.fs.rpc.*

Using this framework, it is possible to understand
performance bottlenecks in large distributed systems

. – p.17/22



Data Postprocessing

In order to cut down on bandwidth, the system
incorporates the ability to perform data postprocessing
and aggregation before transmitttal across the network

This subsystem is referred to as the analyzer library

Analyzer operates in a manner similar to a digital logic
simulator

By composing graphs of these components it is possible
to develop complex analysis routines

Individual outputs from the analysis library may be
subscribed to, and the results may be transmitted to
remote consoles — all in the same manner as normal
probe data

. – p.18/22



Data Postprocessing Part II

individual analysis components perform simple tasks
such as:

integer arithmetic
boolean logic
timing
counting
summation
memory functions
etc.

. – p.19/22



SNMP

SNMP is a core requirement for integrating with
enterprise monitoring systems

development effort is still underway

. – p.20/22



The SNA Instrumentation Team

Dr. David Boyes — SNMP Framework Architect

Derrick Brashear — Random help (when he has time)

Tom Keiser — Lead Programmer

Evan Macbeth — Project Manager

Mike Meffie — C Unit Testing, Debugging, Releases, etc.

Adam Thornton — Perl Unit Testing and SNMP
Development

. – p.21/22



OpenAFS Instrumentation Framework

Questions?

. – p.22/22


	OpenAFS Instrumentation Framework
	Introduction
	Motivating Problems
	Motivating Problems Part II
	A Taxonomy of Instrumentation Techniques
	Taxonomy Part II
	Taxonomy Part III
	Design Goals
	Existing Technologies
	Prerequisites
	OpenAFS Instrumentation
	What is libosi?
	Architecture
	Probe Naming
	Producer/Consumer Model
	Producer/Consumer Model Part II
	Remote Tracing
	Data Postprocessing
	Data Postprocessing Part II
	SNMP
	The SNA Instrumentation Team
	OpenAFS Instrumentation Framework

