Tom Keiser
Sine Nomine Associates




» Project was commissioned by a client of Sine Nomine

» Primary goal is to provide a universal instrumentation
framework to monitor and identify performance
bottlenecks

» Development, testing, and platform porting efforts are
ongoing

» Current patch against OpenAFS HEAD touches 1,100
files, and is 127,000 lines, and growing...

» An alpha patch was committed as the
| nst runent at i on branch of OpenAFS CVS In
01/2007




» Current afs monitoring techniques are reactive
» Continuous polling Is required to identify system faults

» Knowledge of many disparate monitoring and debugging
technologies is required

» Proactive monitoring is needed to:
s find and isolate faults more quickly

s gather a historical record of the conditions leading up
to faults

s allow for future fault data mining




» Current monitoring and debugging systems have races
s fetching state in N unit blocks inherently racy

s fetching many units of state as a single transaction Is
unfair and introduces jitter into production workflows

s shapshotting full system state is unacceptable due to
the required serialization and jitter
» Proactive monitoring allows us to avoid bulk state
fetches by only sending state:
s when Interesting events happen
s Which is interesting to the user




» There are a number of important properties to consider
when designing an instrumentation system:

solicitation must telemetry be requested, or will it be
provided without solicitation?

synchronousness pPoll versus publish/subscribe semantics

stability IS the telemetry data cacheable, or ephemeral?
put another way: does temporal correlation between
data points from the same source imply value
correlation?




» AFS exhibits four major classes of instrumentation:
events delivery of ad-hoc state (e.g. f strace)

queries highly-structured telemetry acquisition methods
(e.g. r xdebug, cndebug, ...)

static statistics statistics which are statically allocated
(e.g. xstat,rx_stats,...)

dynamic statistics statistics related to dynamic objects
(e.g.rx _conn,rx_call,andrx_ peer statistics, ...)

s unfortunately, there is no common framework — each
subsystem reinvents the wheel




» Now, we can classify each of our instrumentation
classes using the previously discussed properties:

events unsolicited, asynchronous, unstable
queries solicited, synchronous, both
static statistics both, both, both
dynamic statistics both, both, unstable
» bottom line: statistics are hard to classify — we can treat

stats updates as trace events, or we can poll for current
stats values on an interval




» Support all four instrumentation classes from the
taxonomy

s Minimal disabled probe overhead

» Integrate seamlessly with enterprise monitoring tools
» Provide linear MP scaling

» Write code using extensible and pluggable APIs

» Provide for distributed telemetry processing and
distributed transaction correlation

» Provide a scripting language interface to lower the
barrier to entry

s Combine all instrumentation into a single namespace
e




» The chosen design borrows elements from a number of
contemporary technologies:

SNMP hierarchical namespace, agent/console
architecture, trap/get methods

Sun DTrace generator/consumer model, dynamic probe
registration, complex probe actions, and data
postprocessing/aggregation

Solaris kstat abstraction for managing and updating
statistics

z/VM per-cpu ring buffers of fixed-length trace records

AIX Trace Framework excellent example of a
developer-oriented tracing framework




» Before serious work on instrumentation could begin, we
needed a robust, portable runtime abstraction

» Historically, DCE/DFS, and to a significantly lesser
extent, AFS, have had runtime abstractions called osi:

s Interfaces were sprinkled throughout the code with
seemingly little order

s N0 naming consistency
s primarily aimed at kernel code
s typically valued portablility over performance

» From these deficiencies came the birth of libosi (the
Operating System Interface library)




Implementation




» libosi provides functionality similar to APR and NSPR

s Frequently, code written to libosi interfaces can be
recompiled for userspace and kernelspace without any
preprocessor ifdef’s

» Provides numerous high-performance interfaces, such
as:
s atomic operations
s per-cpu memory
s Numa-aware memory pools
s high-performance statistics abstractions
s and gquite a bit more!




OpenAFS Instrumentation Framework

Global Control and Data Flows

userspace

trace generators

‘\

Service

SNMP Agent

/

A 4

sync
control syscall

Y

/ trace record ;

async

control mess;

/trace reccrd/
age

trace consumers
Y

async

control message

I Client

SET

GET/GET-NEXT

GET Response

Trap

Enterprise Consoles

async trace
trap record
control RPC

sync poll RPC

f 2 Userspace
AFS/OSI Sys:aH Mux
Kerne\spacel
; |
Y Y
kernelspace
postmaster

Copyright (c) 2007 Sine Nomine Associates v

by Tom Keiser
Last Updated: April 17th, 2007

per-cpu ring buffers

trace consoles

Legend

subsystem foo

message or
data structure bar

data flow

control flow




» Namespace closely resembles SNMP
» probe names are arranged as a dot-delimited hierarchy
» at present, there are 983 probes in the tree

» here are some examples:
s F'pCc.rx.conn. new
s rpc.rx.srv.call Q enqueue
s vol . vol une. actions. attach. begin
s legacy.icl.afs trace. CM TRACE STOREPROC
s db. ubi k. client.events. mark _server down
s Srv.fs.file. CopyOnWite




s We utilize an M:N producer/consumer model

» Instrumented processes, and instrumented kernel
components, can emit trace data from activated probe
points

s Emitted trace data is pulled out of kernel ring buffers by
consumer processes

» Consumers make trace data available to:
s local code written to the consumer C apis

s local user-defined data postprocessing and analysis
routines

» remote trace consoles via Rx

» SNMP agents
e




» Consumer processes perform the following chain of
operations on incoming trace data:

¥

Trace records are queued for probe id to probe name
resolution

Local interested parties are resolved, and probe data
forwarded

Remote consoles with interest are identified
Probe data is encoded for remote transport
Traps are sent to the appropriate remote consoles




» We deliver telemetry via Rx, and SNMP

» Remote tracing is necessary In order to correlate events
In distributed transactions

» For the sake of flexibility, we support both polling and
asynchronous trap methodologies

» Asynchronous traps operate via a priori registration of
probe filter expressions, e.g:

e *
s Srv.fs.rpc. x

» Using this framework, it is possible to understand
performance bottlenecks in large distributed systems




s In order to cut down on bandwidth, the system
Incorporates the abllity to perform data postprocessing
and aggregation before transmitttal across the network

» This subsystem is referred to as the analyzer library

» Analyzer operates in a manner similar to a digital logic
simulator

» By composing graphs of these components it is possible
to develop complex analysis routines

» Individual outputs from the analysis library may be
subscribed to, and the results may be transmitted to
remote consoles — all in the same manner as normal
probe data




» Individual analysis components perform simple tasks
such as:

s Integer arithmetic
s boolean logic

s timing

s counting

s Summation

s memory functions
» etc.




» SNMP is a core requirement for integrating with
enterprise monitoring systems

» development effort is still underway




s Dr. David Boyes — SNMP Framework Architect

» Derrick Brashear — Random help (when he has time)

» Tom Keiser — Lead Programmer

s Evan Macbeth — Project Manager

» Mike Meffie — C Unit Testing, Debugging, Releases, etc.

» Adam Thornton — Perl Unit Testing and SNMP
Development




Questions?




	OpenAFS Instrumentation Framework
	Introduction
	Motivating Problems
	Motivating Problems Part II
	A Taxonomy of Instrumentation Techniques
	Taxonomy Part II
	Taxonomy Part III
	Design Goals
	Existing Technologies
	Prerequisites
	OpenAFS Instrumentation
	What is libosi?
	Architecture
	Probe Naming
	Producer/Consumer Model
	Producer/Consumer Model Part II
	Remote Tracing
	Data Postprocessing
	Data Postprocessing Part II
	SNMP
	The SNA Instrumentation Team
	OpenAFS Instrumentation Framework

