
OpenSSH, PAM
and AFS.

A N U N H O L Y T R I N I T Y ?

Overview

Lots of people have issues with getting AFS
and OpenSSH working together

Quickly cover the causes of these

Not a general AFS & PAM talk - Russ will
do that tomorrow!

Basic ssh
Architecture

Incoming connections are answered by a
process

That process forks off a shell, and forwards
network connections to the shell

root user

sshd shell

Complication 1:
Privsep

This model has a root owned process
answering and handling all network traffic

Buffer overflows & other bugs in any part
sshd result in machine compromise

OpenSSH’s solution is privsep

Have a minimal state machine to perform
trusted acts. Everything else (especially
network actions) in an untrusted process

Privsep
Rough model for an authenticated connection is:

nobody user

root sshd monitor

sshd shell

Not quite so simple, unfortunately ...

Privsep Complexities

root

sshd root

rootuser

user

Unpriviledged process forked to handle incoming
network traffic
Existing process remains as root owned ‘monitor’,
and handles user authentication

Initial incoming connection

Following authentication, unpriviledged ‘sshd’ user
process exits
Root owned ‘monitor’ forks user owned process to
handle continued network access
Monitor forks process to own user’s cell
Child sets up session
Shell is exec’d

sshd

monitor

monitor

shell

privsep

privsep

Adding Pam to The
Mix

Authentication happens
in one process

Credentials storage
happens in another

root

sshd root

rootuser

user

sshd

monitor

monitor

shell

privsep

privsep

Challenge response

PAM interaction doesn’t play well with the
OpenSSH monitor system.

ChallengeResponse means that another
process appears in the mix

This process isn’t related in anyway to the
login process.

Now With PAM

root

sshd root

rootuser

user

sshd

monitor

monitor

shell

privsep

privsep

root
pam

ChallengeResponse
and Threads

OpenSSH does support using threads instead
of forking a process for ChallengeResponse

Not well tested, or documented!

Overview

ChallengeResponse won’t work with PAM
modules that expect authentication and
credentials storage to happen in the same
process

Solution is to use threads, or a pam_krb5
module that is clever

Cascading
Credential

Renewal

Motivation

Credentials expire

Renew on
workstation

Then, have to
individually renew
everywhere else

Must be an easier
way!

Implementation

GSSAPI Key exchange lets us delegate
credentials as a by-product of keying a
connection

SSH supports (and encourages) regular
connection rekeying

Implementation II

Client watches the credentials cache for
renewed credentials

When credentials have been renewed, and
following sanity checks, it initiates a rekey
with the server

Server modified to accept delegated
credentials following rekey and, after snatiy
checks, store them to disk

Code Availability

Patch available now

Two configuration options:

GSSAPIRenewalForcesRekey

GSSAPIStoreCredentialsOnRekey

