
RXGK
why?

AFS & Kerberos Best Practices Workshop 2007

Love Hörnquist Åstrand
Stockholm University



Problem statement

• Need better then fcrypt

• Need to protect the cache manager data

• Not keep re-using same key

• Authentication independent of transport

• Possible to migrate to newer authentication 
mechanisms



Overview

• Security problems

• The protocol

• Migration

• Status



Security problem

• Symmetric authentication protocols, like 
Kerberos and NTLM security problem

• The user knows the secret key the client 
uses to secure the traffic to the file server, 
and thus can inject/modify data on the fly. 

• The attack is an active MITM attack.



Attacks

• Fool the client to allow reading files that 
exists in the buffer cache



Attacks

• By making the client think the attacker is 
allowed to modify files, insert data into 
buffer cache and then wait until the 
unsuspecting legitimate user flushes the data 
to the file server



Attacks

• By pre-fetching data from the file server and 
corrupting it before its first stored in the 
buffer cache, the when the legitimate user 
fetches the data, its not the same as on the 
file server. 



What is the problem ?

• user knows the key

• cache manager can’t verify it



Token combing

• Allow the cache manager get a key

• Combine the key with the user key

• Have the rights as the user, but the key as 
the cache manager knows



Key for cache manager

• A keytab for the machine (machine account)

• Public key for the cell



The Protocol

• RX authentication can’t handle large packets

• RX authentication can’t multi roundtrips

• Want to have different keys for each 
connection

• Client chooses the key

• Want to use GSS-API

• Reuse existing cryptographic framework



The Protocol
RXGK service

• rxgk service runs on same port as the 
service

• Runs in clear text

• Uses GSS-API to secure a rxgk token

• gss_pseudo_random() to get a key

• server parameters



Server parameters

• Selected encryption types

• Time and byte limits for connections

• Security level



Connection key

• Derives the connection key based on

• rxgk key

• connection id

• service id

• start time

• epoch



GSS-API

• rxgk can use all GSS-API mechanisms that 
supports gss_pseudo_random()

• In GSS-API all names are not born equal

• Kerberos have not same names as X.509

• afsgk@_afs.cell.name

mailto:afsgk@_afs.cell.name
mailto:afsgk@_afs.cell.name


Names

• Name: type + data

• GSS-API names



Migration

• Will support partly migrated cell

• Transition allows downgrade attacks

• Allows running old file servers and DB 
software w/o modification



Migration

• New cache manager

• New aklog/afslog

• New fileservers

• New rxgk service on the DB servers

• New PTserver

• New VLDB server that replace rxgk server



Client Flow

• aklog/afslog get list of supported CM mechs

• Is cell is a migrated cell ? Remove rxkad

• Gets tokens and install them



Cache manager flow

• When starting, get a rxgk token

• Before RX challenge/response, check if FS 
supports RXGK on the same service

• Combine RXGK token

• Use combined RXGK token to fileserver



File server flow

• Extract the name from RXGK token

• Talk to the ptserver to convert to AFS ID

• If missing ptserver support, convert locally 
to Kerberos 4 and use that



Status

• test client working

• migration strategies worked out



Left to do

• code cleanup and verification

• aklog/afslog/libkafs (have sample client)

• RXGK service (have sample service)

• OpenAFS file server file server integration

• integration into OpenAFS client

• arla done



Questions?


