Automated Keytab
Installation

Thoughts about designing secure applications

The Problem

@ Batch systems need automated install

@ New ssh requires krb5 keytabs for GSSAPI
authentication

@ System must scale to hundreds of machines

Trust

@ Trust can only be extended by software, not
created.

@ What do you trust already?

@ How to extend that trust securely?

Ideas that didnt work

@ Ip based one time auth
@ Client pull schemes
@ Temporary trust

@ Creating a key hash from ssh keys (this one
came closest.)

DOH!

@ The automated install process already installs
a public ssh key to allow access to the root
account.

@ Install a separate one fo use only for keytab
"catching”.

Minimum Privilege

@ Split the code into parts that can easily be
restricted.

@ Named pipes can be very useful to use the
filesystem for authorization.

On the Client

@ catchkeytab : run out of root .ssh/authorized_keys
on local machine, expects keytab on STDIN.

@ from="afsdbl.slac.stanford.edu”,command="/opt/
openssh/sbin/catchkeytab"

On the KDC

@ listenkeytab : inetd server that gets Ip
address of connection, writes ip addr to
named pipe read by

@ instkeytab : A stand alone daemon that runs
as root and uses local version of kadmin to
create host principals. It then does

@ cat keytab | ssh -l root host.slac.stanford.edu

Trust but verify

@ instkeytab checks:
@ that the ip addr is slac.stanford.edu

@ that a request hasnt arrived in the last 5
minufes.

@ that the machine has "taylor” installed
(ie. is centrally administrated).

Trust but Verify Part II

@ catchkeytab checks:
@ If input is larger than X drop on floor.

@ If machine already has a valid keytab,
drop on floor.

@ If the keytab is valid, install from femp
file to /etc/krb5.keytab.

Denial of Service

@ Hundreds of processes all trying to get a
lock on the KDC at once is a bad thing.

@ Throttle where ever possible via a request
queue and make what you can't throttle as
lightweight as possible.

@ When in doubt throw it ouf! Never trust
your own code, whenever data passes an
privilege boundary it must be verified again.

