
Demand Attach / Fast-Restart Fileserver

Tom Keiser
Sine Nomine Associates

. – p.1/28



Introduction

Project was commissioned by an SNA client

Main requirement was to reduce fileserver restart time
by > 60%

Development & testing performed over 7 months in
2005–2006 timeframe

Resulted in > 24, 000 line patch to OpenAFS HEAD

Patch was committed to OpenAFS CVS in 03/2006

Pulled up to development branch in time for 1.5.1 release

. – p.2/28



Motivations for Redesign

The on-disk format has a number of limitations
Metadata is stored in per-volume files
Metadata has poor spatial locality
No journalling

Volume Package locking model doesn’t scale
One global lock
No notion of state for concurrently accessed objects
Lock is held across high-latency operations

Breaking CallBacks takes a lot of time

Keeping the server offline throughout the salvage
process is unnecessary (with certain caveats)

. – p.3/28



Proposed Changes

Introduce notion of a volume finite-state automata

Only attach volumes as required (demand attachment)

Only hold volume lock when absolutely necessary

Perform all I/O outside of the global lock

Automatically salvage volumes as required

Parallelize fileserver shutdown process

Stop breaking CallBacks during shutdown

Save/Restore of host/callback state

Volume garbage collector to offline infrequently used
volumes

. – p.4/28



Demand Attach Fileserver

Implementation

. – p.5/28



Demand Attach Architecture

Demand Attach consists of five components
demand attachment
salvageserver

host/callback state save and restore
changes to bos/bosserver
ancillary debug and introspection tools

Components have substantial interdependencies

It would be difficult to make them separable

. – p.6/28



Fileserver Startup Sequence

Old Fileserver Demand Attach Fileserver

vice partition list is built

all volumes are fully at-
tached

host/callback state is
restored

host/callback state
consistency is verified

vice partition list is built

list of volumes on each
partition is scanned

all volumes are placed
into “pre-attached” state

. – p.7/28



Fileserver Shutdown Sequence

Old Fileserver Demand Attach Fileserver

break callbacks

shut down all volumes

quiesce all host and
callback state

shut down all online
volumes

verify consistency of
host/callback state

save host/callback state

. – p.8/28



Feature Comparison

Feature 1.2.x 1.4.x DAFS

Parallel Startup no yes yes

Parallel Shutdown no no yes

Tunable data structure sizes no no yes

lock-less I/O no no yes

automatic salvaging no no yes
lock-less data structure traversals no no yes

volume state automata no no yes

. – p.9/28



Salvageserver

Receives salvage requests from the fileserver or bos
salvage

Maintains a salvage priority queue

Forks off new salvager worker children as needed

Handles log file combining

Maintains N concurrent worker children whose task
orders are load balanced across all vice partitions

. – p.10/28



Volume Garbage Collector

Underlying assumption is many volumes are accessed
so infrequently that it is inefficient to keep them attached

The inefficiency has to do with optimizing fileserver
shutdown time

The garbage collector is modeled after the generational
GC paradigm

Frequently accessed volumes must be dormant for a
longer period to be eligible for offlining
Infrequently accessed volumes are scanned more
frequently to determine their offlining eligibility
A background worker thread occasionally offlines a
batch of eligible volumes

. – p.11/28



Demand Attach Fileserver

Performance

. – p.12/28



Startup Performance

Startup time is now heavily limited by underlying
filesystems directory lookup performance

Even for 60,000 volumes across 3 partitions, startup
times were still under 5 seconds running namei on
Solaris UFS

Host/CallBack state restore can take several seconds if
the tables were nearly full

This is a cpu-bound problem, so faster machines
mostly obviate this
Actual restore is fast; verification is slow
Verification can optionally be turned off with the
-fs-state-verify argument

. – p.13/28



Shutdown Performance

Benchmark Environment

Sun E450 (4x 480MHz 8MB cache, 4GB RAM)

4Gb aggregate multipathed FC fabric attachment

Solaris 10 zone

56 vice partitions spread across LUNs on various IBM
FAStT and Sun arrays

44 physical spindles behind the vice LUNs
mixture of 10k and 15k FC-AL disks

128 volumes per partition (to keep test iteration time low)

. – p.14/28



Shutdown Performance

. – p.15/28



Shutdown Performance

It turns out the test system was sufficiently slow to turn
the shutdown algorithm into a CPU-bound problem
much beyond 32 threads

Kernel statistics collected point to very high context
switch overhead

As a result, we don’t know the true lower bound on
shutdown time for the underlying disk subsystem

Aggregate microstate CPU time was 85% kernelspace

Taking N=32 as the last good value, we get a parallel
speedup of 49.49

6.28
≈ 7.88 for 32 threads

This yields a parallel efficiency of 7.88

32
≈ 0.25

. – p.16/28



Demand Attach Fileserver

Administration

. – p.17/28



New Bos Create Syntax

The bos create syntax has been changed to deal with the
online salvage server:
bos create <hostname> dafs dafs \
/usr/afs/bin/fileserver \
/usr/afs/bin/volserver \
/usr/afs/bin/salvageserver \
/usr/afs/bin/salvager

. – p.18/28



Bos Salvage

bos salvage must change because implementation is
intimately tied to bnode name

bnode name had to change to resolve ambiguity
between MR-AFS and Demand Attach Fileserver

Cannot manually salvage volumes on demand attach
fileserver with older bos client

New bos client maintains identical salvage arguments,
except -forceDAFS must be passed to perform a
manual salvage on a demand attach fileserver

. – p.19/28



Salvageserver

Automated salvaging is not without its pitfalls

Infinite salvage,attach,salvage,... loops are possible

To halt this progression, a hard limit on salvages for each
volume is imposed

This counter is reset when the filserver restarts, or when
the volume is nuked

The -Parallel argument controls the number of
concurrent salvage workers

Occasional full-server salvages (requiring an outage) are
still a good idea

. – p.20/28



Introspection and Debugging Utilities

salvsync-debug provides low-level introspection and
control of the salvage scheduling process

fssync-debug provides low-level introspection and
conrol of the fileserver volume package

state_analyzer provides an interactive command line
utility to explore and query the fileserver state database

All three of these utilites have context-sensitive help
commands

fssync-debug and salvsync-debug commands
should be understood before use; misuse could cause
Bad Things (tm) to occur

. – p.21/28



Demand Attach Fileserver

Concluding Thoughts

. – p.22/28



When not to use Demand Attach

environments where host tables overflow
e.g. lots of mobile clients, NATs, etc.
multi_Rx needs to be replaced before we can
overcome this limitation

environments where fileserver crashes happen
frequently

demand salvages take longer to run than full-partition
salvages
future work should solve this problem

. – p.23/28



Potential Future Development Directions

Fine-grained locking of volume package

Replace current daemon_com mechanism with unix
domain sockets or Rx RPC endpoints

Continually store list of online volumes into fileserver
state database

Seed salvageserver with list of previously attached
volumes following a crash

Provide fine-grained volume state from vos commands

Dynamic vice partition attachment/detachment without
fileserver restart

. – p.24/28



Demand Attach Fileserver Clustering

Automated failover is very fast due to demand
attachment

Fewer volumes to salvage following a crash

Salvage time is not a component of failover time

There is potential to build on the Demand Attach
infrastructure to provide robust fileserver clustering

Treat volume/host/client/callback state as a
memory-mapped on-disk database during runtime, as
well as during startup/shutdown
If/When Partition UUID support happens, dynamic
rebalancing of partitions across an N-node fileserver
cluster becomes feasible

. – p.25/28



Conclusions

Fileserver restart time has been drastically reduced
despite poor scaling properties of the on-disk format

Further performance gains are going to be increasingly
difficult

New on-disk format could be very fruitful
Improve spatial locality
Optimize for DNLC performance characteristics on
namei
Balance disk I/O subsystem performance
characteristics with cache hierarchy performance
characteristics using something like self-similar
B-trees

. – p.26/28



Conclusions

Diminishing returns associated with context switch
overhead are a serious limit to how far synchronous I/O
algorithms can scale

Using asynchronous I/O (on certain platforms) could
yield significant further performance gains

Demand Attach architecture opens up a new realm of
possibilities in the space of High Availability and
Fileserver Clustering

. – p.27/28



Demand Attach Fileserver

Questions?

. – p.28/28


	Demand Attach / Fast-Restart Fileserver
	Introduction
	Motivations for Redesign
	Proposed Changes
	Demand Attach Fileserver
	Demand Attach Architecture
	Fileserver Startup Sequence
	Fileserver Shutdown Sequence
	Feature Comparison
	Salvageserver
	Volume Garbage Collector
	Demand Attach Fileserver
	Startup Performance
	Shutdown Performance
	Shutdown Performance
	Shutdown Performance
	Demand Attach Fileserver
	New Bos Create Syntax
	Bos Salvage
	Salvageserver
	Introspection and Debugging Utilities
	Demand Attach Fileserver
	When not to use Demand Attach
	Potential Future Development Directions
	Demand Attach Fileserver Clustering
	Conclusions
	Conclusions
	Demand Attach Fileserver

