Kerberos and PKI Cooperation

Daniel Kouřil, Luděk Matyska, Michal Procházka
Masaryk University

AFS & Kerberos Best Practices Workshop 2006
METACentre Project

- Czech nation-wide Grid activity
- Infrastructure for distributed and high performance computing
- Major computing centres in the country
- Security architecture based on Kerberos
 - (Co)-Authored a few Kerberos solutions (SSH, Web authN)
- Partner of international Grid projects (EGEE2)
PKI Overview

- Asymmetric cryptography
- Each user has a key-pair consisting of a public and private key
- Private key kept secret, public key spread among other users
- Digital signatures
 - Private key used to generate digital signatures
 - Public key used to verify the signature
- Similarly encryption
PKI - CAs

- How to get a correct public key?
- Independent identity providers – Certification authorities
- Digital certificates (X.509)
 - Public key, key owner identity, validity, other auxiliary information
 - signed by the CA key
- Only the CA key is distributed across the community
- Certificate revocation
- Building a trusted CA is a political and organizational problem not a technical issue
Kerberos vs. PKI

- Symmetric vs. asymmetric cryptography
 - Performance
- Tickets vs. Certificates
 - Similar concept
 - Issued by identity providers
- Online KDC vs. offline CA
 - Think of revocations (OCSP)
- Password vs. Private key
 - Long-term private keys must be stored on disk, are maintained by the user
 - In real-world deployment many weakness in key management
- Revocation mechanism
 - Not needed for Kerberos, can be source of troubles for PKI
- Scalability
 - KDC must register every user
- Long-term digital signatures
 - Email signing, encrypting is very common using PKI
 - Message level security
Kerberos and PKI

- Combining PKI and Kerberos
 - PKI is requested by large Grid projects
 - We have never wanted to abandon Kerberos

- Credential conversions
 - PKI to Kerberos
 - Kerberos to PKI
PK-INIT

- IETF specification (draft)
- Adding public key based authentication to the AS_REQ/AS_REP messages
 - Using pre-authentication mechanism
- PK-INIT only affects the initial authN step
 - rest of the protocol is untouched (and transparent for the end services).
PK-INIT Protocol

- Client sends a public key (certificate) and signature
- KDC verifies the certificate (public key) and signature and check the request
 - Public key must be bound to the client principal
- The KDC reply isn’t encrypted with a principal key from the DB but with a new symmetric key
 - The symmetric key is encrypted using the public key (or DH)
- The client verifies the reply, gets the key, decrypts the reply
- From this moment on the client proceeds as usual
 - TGT can be used to ask other tickets
PK-INIT Implementation

- We implemented a first version the PK-INIT specs for Heimdal
- Accepted by Heimdal
- In production use in METACentre
 - Support for Grid proxy certificates
 - Integration with the user management system
PK-INIT and Smart Cards

- OpenSSL Engine
 - Allows to use devices through #PKCS11
- OpenSC framework
- iKey3000 USB token
 - Combination of smart card and reader
 - Currently distributing among users
- Works both on Unix and Windows
Smart Card Access

- kinit
- Heimdal libs
- OpenSSL Libs
- OpenSSL Engine
- PKCS11 Engine Module
- PKCS11 library
- Token

configurable
Travelkits

- Unix
 - Standard krb5 tools from the distribution
 - PK-INIT enabled kinit command and auxiliary files (CA certificates) - rpm, deb

- MS Windows
 - Standard Kerberos for Windows
 - PK-INIT enabled kinit command etc.
 - Part of Heimdal ported to Windows
 - Kerberos enabled Putty and WinSCP clients
Kerberos to PKI

- Given a Kerberos ticket create a certificate and private key
- Easy access to the Grid, or other PKI based services (www)
- CA
 - Creating certificates for Kerberos tickets
 - Operating online
 - Short-time certificates
 - Private key can be unencrypted
Kerberos CA

- **kCA**
 - Used in the Grid community (Fermilab)
 - kx509, kpkcs11

- **MyProxy**
 - Very common service in Grid world
 - On-line credential repository
 - Latest versions support also CA mode
MyProxy

1. Client generates a new key-pair
2. Sends a CSR to the MyProxy server
 - Connection secured by Kerberos
3. MyProxy server returns a signed certificate
 - Using LDAP to map Kerberos principal to subject name
 - Lifetime is copied from the ticket
4. Client stores credential on disk
 - Generated private key and received certificate
PKI to Kerberos

- Credentials are stored in „Grid“ format
 - Can be used by standard grid commands
- Other applications must be configured
 - kpkcs11 library for PKCS11 aware apps
 - Using the Windows certificate repository
- Conversions can be run transparently
 - Login script on UI machines
Conclusions

- PKI and Kerberos can cooperate
- Multi-mechanism SSO possible