
Current Status of RxTCP

Ken Hornstein
US Naval Research Laboratory

 Current Project Goals

 Increase AFS performance to take advantages of modern
hardware and networks, while tracking up-to-date code base
(which includes things like 64-bit file sizes).

 First obvious target was tackling the transport protocol used by
AFS (called Rx), a home-grown UDP based protocol developed in
the late 80’s/early 90’s.

 Previous profiling and performance improvement attempts were
hindered by poor Rx performance (hard to trace).

 Current direction is to implement new transport protocol over
TCP, while keeping a similar API (some API changes are allowed,
but a completely new API would involve too many changes
across AFS).

 Current Work To Date

 Protocol has been designed by group of AFS developers, and has
AFS community "buy in".

 At the Swedish AFS Hackathon, Jeff Hutzelman, Magnus Althorp,
and myself worked on the RxTCP protocol design.

 Rx communication consists of connections (authentication
abstraction) and multiple calls within each connection. Each call
corresponds to a single RPC operation.

 Since connections are long-lived but calls are short-lived, it was
decided to map a Rx connection to a TCP connection.

 This prevents connections spending lots of time in slow-start, avoiding same
problem with early HTTP protocol.

 RxTCP Protocol Details

 All data is packetized and has a 12 byte header for each packet.
 Maximum packet length is variable (default is 8192 bytes, but can

be changed by application).
 Packet header includes following fields:
 Direction & "Last" bits (to indicate call end)
 Packet type (data, new call, end call)
 Total packet length
 Call number (which may be zero if not associated with call).
 Including call number in header simplified the most common case

(data packets).
 Original protocol design lacked some of these fields; header

changed due to lessons learned during implementation.

 Additional Protocol Details

 Multiple streams multiplexed over a single TCP connection can
result in one writer unfairly consuming all available connection
space.

 To alleviate this problem, RxTCP includes a flow control algorithm
to balance bandwidth among consumers.

 Ideas taken from IETF BEEP protocol.

 Writers take round-robin turns writing packets.

 Data packets are acknowledged by receiver; as number of calls
increase, window size for all calls gets smaller.

 Additional Protocol Details

 Protocol includes concept of "reverse" connections.

 Rx connection in opposite direction of TCP connection establishment.
 Was suggested by people who have problems with NATs (fileserver needs to

break callbacks to client).
 Only partial support at this time; will likely require API extensions.

 Protocol provides traditional Rx connection identification to
maintain API compatibility.

 epoch - Start time that Rx library was initialized
 cid - Start time of Rx connection

 Remove concept of Rx "channels" (limit of 4 outstanding calls per
Rx connection).

 Implementation Of RxTCP

 AFS uses two threading packages. One is the traditional
pthreads interface, the other is called LWP and is a cooperative
threading package which does it’s own stack pointer mangling.

 It was decided to focus the RxTCP effort exclusively on pthreads,
since it was impossible to take advantage of multi-processor or
multicore systems with LWP.

 Most fileservers deployed today use pthreads, as well as the
volume server (most database servers are not, but they generally
do not have large bandwidth requirements).

 Each operating system has it’s own type of in-kernel
multiprocessing, but shares more features with pthreads than
LWP, so seems like a sensible choice.

 Implementing RxTCP Data Buffering

 The buffering scheme used by RxTCP went through a number of
iterations in an attempt to minimize the number of data copies.

 A number of other packet-data-over-TCP protocols were
examined (SSH & X-windows were two); all would read data into
an intermediate buffer.

 Attempts to adopt a similar scheme and minimize the number of
read() system calls were ultimately unsuccessful; keeping track of
which call had which data in the buffer grew to be too
complicated, and with multi-call support handling data in a ring
buffer was nearly impossible.

 Considered implementing mbuf-like scheme, but realized Rx
already had that and implementing that would probably result in
significant performance penalty.

 Final RxTCP Data Buffering Solution

 Upon connection creation, a buffer was created to hold RxTCP
packet headers.

 When the connection was "empty" (no further data), _only_ the
header was read into this buffer.

 If it was a data packet, the associated call was located, and the
next read() system call reads data directly into the application
buffer. If the application buffer is full, the data is buffered
internally (and counted against the call’s window).

 As part of the same read() call (actually uses readv()), the header
for the next packet is read into the packet header buffer. This
saves system call overhead for the next packet.

 RxTCP Pthread Interface

 Every time a new Rx connection (one TCP connection) is created,
a dedicated worker thread is created to handle reading data from
the connection file descriptor.

 This worker thread wakes up threads waiting for data in
rx_Read() using standard pthread primitives. Write calls are
protected against simultaneous calls, but could not come up with
a scheme that increased efficiency (data is directly written from
application buffer, using writev() to prepend packet header).

 This simple interface was chosen to get an implementation
quickly. Should scale to reasonable number of connections, but
connections numbering in the thousands will likely suffer from
poor thread scheduling performance. May need to consider
dispatching worker threads to deal with incoming packets.

 Other Implementation Bits

 Most interfaces directly manipulated UDP packet queues;
changed all of these interfaces to check for a TCP connection and
make appropriate calls into the TCP module.

 Internals are sort of "hybrid"; while many internal fields were
reused, a number were not used by RxTCP, so discovered via
trial and error which fields were needed (if some fields were left
uninitialized, Rx would crash).

 Original thinking was that TCP would always be tried first, then
fall back to UDP. Later experience revised that expectation.

 Testing RxTCP

 Original test suite (afsperf) was insufficient for needs.
 Lacked easy way to add RxTCP items, and in beginning test program had to

handle packets directly.

 Created new test suite (rxtest) to handle RxTCP exclusively.

 Test program can adjust window parameters, frame sizes,
application write sizes, TCP buffer sizes, and total write length.

 Test Results

 Original frame size of 4096 resulted in too many system calls;
increasing to 8192 increased performance (frame sizes larger
than that had no impact).

 Original window protocol per BEEP specifical resulted in a
window size adjustment for every packet. This reduced
performance by 20%!

 Switching to TCP model (window update every other packet)
increased performance to near original levels (within a few
percent).

 With the final buffering scheme and additional tuning, was able to
achiece 90% of theoretical performance on Gig-E.

 Performance improvement over Rx showed that transport
protocol design was sound.

 Multi-Call Support

 Typical connection to fileserver has multiple calls simultanously
over single Rx connection.

 Required debugging problems encountered with concurrency
(had a data corruption problem on reads that took a long time to
track down, related to multi-call handling).

 Additional support was added to rxtest to do simultaneous calls to
exercise multi-call support.

 Tests with multi-call showed almost perfect linearity (transfer rate
across all calls was within a few percentage points of a single-call
transfer).

 New Security Internal Interface

 The security library (rxkad) expected to be able to manipulate
rx_packet structures directly.

 Since we did not use the rx_packet buffering interface, this made
the existing interface difficult to use.

 After trying to shoehorn the existing security interface to deal with
a stream protocol, it was finally decided to create a seperate set
of security interface functions which could deal with a stream
interface.

 This was implemented, and security is now equivalant to Rx.

 New Rx APIs

 Has been ongoing desire to support IPv6 in Rx.

 Some commercial customers wanted way to bind to specific
interfaces with Rx (currently the server binds to INADDR_ANY).

 We wanted the ability to specify UDP or TCP support.

 Had meeting in January to flesh out new Rx API functions.

 Details of New API Functions

 Existing API: rx_Init(u_short port)
 Only can take a port number, no specific interfaces or protocol.

 New API: rx_InitAddrs(struct sockaddr_storage *, int *, int)
 Takes array of struct sockaddr_storage (different interfaces or

protocols such as IPv6), array of protocol types (SOCK_DGRAM
or SOCK_STREAM), and array size.

 Existing API: rx_NewConnection(uint32, u_short port, ...)
 Only can take an IP address as connection address.

 New API: rx_NewConnection(struct sockaddr_storage *, int *, int, ...)
 Same concept as other new API (array of addresses and

protocols).

 Current Work

 Integrating RxTCP implementation into AFS fileserver.

 Right now fileserver hangs on starting, which interacts poorly with
the volserver.

 Implemented API extensions for RxTCP to solve these problems.

 Hope to resolve these problems soon.

 Integration of RxTCP in AFS Client

 Likely to be the most challenging part, technically, since client is
loaded into the OS kernel.

 In theory, should "just work" ... but I had the same theory about
the AFS fileserver, and look how well that worked out.

 Only potential extra work at this time is to perform some
housekeeping in the client to keep track of connection protocol to
improve round-trip time during connection setup (e.g., don’t try
TCP if the server only supports UDP).

 Given technical variables, will have estimate of time to complete
after fileserver is done.

Any Questions?

