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Background

• Assigned to work on backup and disaster 
recovery end of 2005

• Disk-based backup desired to replace TSM
• Funding and political support were strong
• Policy was vague



Some Useless Stats

• 13 dataful servers, plus others
• Two vice partitions per server
• 9.8TB as of today, about 33% full
• Critical university services rely on AFS
• 245,686 volumes (not counting backups, 

clones, etc)
• Volumes up to 110GB actual usage - and 

users want much bigger



Process Confusion

• Problem: What is backup, and why do it?
• Solution: there are three separate needs

– Restore of lost/deleted files - “file restore”
– Recovery from hardware/software disaster
– Long-term storage of critical data sets -

“archive”
Optimal solution for one is suboptimal for 

others



File Restore

• Save users from their errors
• Save users from their errors
• Recover data when old user returns
• FOIA/HIPPA complicate the picture
• Predictability of backup and restore process
• A very slow process (days) is usually 

acceptable.



Disaster Recovery

• When a service is going to be out for a long 
time, it needs to be restored and quickly

• Involves files PLUS hardware, power, 
cooling, network, dogs, cats, professors…

• Always unplanned
• Only the most recent version is of interest
• As close to real-time data as possible



Archival

• Officially, not our issue
• Unofficially, we expect it to come up
• Timing of archive selected manually by 

user
• Retention time arbitrarily long (but FOIA, 

HIPPA, etc complicate things)



Backup To Disk For File 
Recovery

• Basic design done in Jan 06
• afsdump.pl posted by Matthew Hoskins
• Heavily modified for our use
• Yes, we will post
• Some auxiliary tools as well



File Restore Basic Method

• For every afs server, a bfs server
• Incremental dumps arbitrarily deep
• n days to do a cycle
• Only 1/n full dumps per day
• Per-volume dump schedules that override 

default



Getting Started

• Initial backup is level 0
• About 20x faster than ancient TSM (1.2 TB 

in 5 hour vs. 3+ days)
• After first backup, rewrite the db to spread 

future level 0s across the volumes 
(reseq_dump)

• Daily/full backup mix, all servers, under 1 
hour



Actual Status

• Running in pilot today
• Expected to be in production in 30 days
• Lots more interesting tools to build, but 

core is done:
– We can back up
– We can recover

• Declare victory, start on disaster recovery



Quick Questions



vos shadows (history)

• vos move
– same volumeID
– deletes source volume and .backup

• vos copy
– new volumeID; must not exist
– doesn’t delete source volume nor .backup

• vos shadow
– new or old (default) volumeID
– doesn’t delete source volume nor .backup
– not in VLDB
– -incremental



vos shadows (changes)

• volIsShadow (controlled recovery)
– new bit in volume header

• vos shadow
– sets volIsShadow

• vos syncvldb
– error if volIsShadow
– override with vos syncvldb -forceshadows



vos shadows (future)

• Volume groups/families
– rw, ro, backup, clone, parentID
– where do shadows fit in?

• restoredFromID
– “….to make sure that an incremental dump is not 

restored on top of something inappropriate”
– dangers

• vos shadow a
• vos shadow b -incremental

• Database vs. listvldb/listvol/paper notes



Quick Questions



Disaster Recovery & Shadows

• One to one relationship of afs server to 
recovery server

• Spread afs and bfs servers across sites?
• Same host used for disaster recovery and 

disk-based backup (“file restore”)
• RAID configured for space, not speed
• Shadows don’t appear in volume db
• Incremental refresh of shadows is fast



When Disaster Hits

• Identify which server is down
• Promote all volumes on shadow server to 

production
• You’re back in service, with loss of only 

data since last refresh of shadow
• Incrementally update shadows as frequently 

as load allows - maybe 3-4 times a day



Gotchas I

• Must be careful to delete/create shadows 
when doing vos move

• vos moves don’t invalidate old backups, but 
shadows have problem (see later)

• slocate/updatedb is your friend
• Periodic reruns of reseq_dumps needed



Gotchas II

• Need a real db (will have soon)
• When 13 afs servers shadow/dump to 13 bfs 

servers simultaneously, bandwidth suffers
• Distributing level 0s speeds disk dumps, but 

makes tracking (and restore?) complex
• Per-volume dump schedules not 

implemented, but only a few days work



Into The Future

• We want clones of shadows
• Do the backups from the shadows, not the 

live volume
• Don’t use .backup, use clones - so 24-hour 

snapshots can be available even if a full 
backup takes longer than 24 hours



Use Clones Instead of Backups

• Clones should appear in db
• Let users access the multiple clones like 

.backup
• Have multiple .backups (clones) available



Allow many clones

• 30 at a minimum, hundreds is better
• Avoid performance issue by making many 

clones from the shadow, not the production
• When you move a shadow (it will happen), 

preserve the clones



Naming issues for many clones

• Must be comprehensible to users
• May have to be dynamic
• How to make available without training 

400,000 people to do fs mkm
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