
Distributed Backup And Disaster
Recovery for AFS

A work in progress
Steve Simmons Dan Hyde

scs@umich.edu drh@umich.edu
University of Michigan

mailto:scs@umich.edu
mailto:drh@umich.edu

Background

• Assigned to work on backup and disaster
recovery end of 2005

• Disk-based backup desired to replace TSM
• Funding and political support were strong
• Policy was vague

Some Useless Stats

• 13 dataful servers, plus others
• Two vice partitions per server
• 9.8TB as of today, about 33% full
• Critical university services rely on AFS
• 245,686 volumes (not counting backups,

clones, etc)
• Volumes up to 110GB actual usage - and

users want much bigger

Process Confusion

• Problem: What is backup, and why do it?
• Solution: there are three separate needs

– Restore of lost/deleted files - “file restore”
– Recovery from hardware/software disaster
– Long-term storage of critical data sets -

“archive”
Optimal solution for one is suboptimal for

others

File Restore

• Save users from their errors
• Save users from their errors
• Recover data when old user returns
• FOIA/HIPPA complicate the picture
• Predictability of backup and restore process
• A very slow process (days) is usually

acceptable.

Disaster Recovery

• When a service is going to be out for a long
time, it needs to be restored and quickly

• Involves files PLUS hardware, power,
cooling, network, dogs, cats, professors…

• Always unplanned
• Only the most recent version is of interest
• As close to real-time data as possible

Archival

• Officially, not our issue
• Unofficially, we expect it to come up
• Timing of archive selected manually by

user
• Retention time arbitrarily long (but FOIA,

HIPPA, etc complicate things)

Backup To Disk For File
Recovery

• Basic design done in Jan 06
• afsdump.pl posted by Matthew Hoskins
• Heavily modified for our use
• Yes, we will post
• Some auxiliary tools as well

File Restore Basic Method

• For every afs server, a bfs server
• Incremental dumps arbitrarily deep
• n days to do a cycle
• Only 1/n full dumps per day
• Per-volume dump schedules that override

default

Getting Started

• Initial backup is level 0
• About 20x faster than ancient TSM (1.2 TB

in 5 hour vs. 3+ days)
• After first backup, rewrite the db to spread

future level 0s across the volumes
(reseq_dump)

• Daily/full backup mix, all servers, under 1
hour

Actual Status

• Running in pilot today
• Expected to be in production in 30 days
• Lots more interesting tools to build, but

core is done:
– We can back up
– We can recover

• Declare victory, start on disaster recovery

Quick Questions

vos shadows (history)

• vos move
– same volumeID
– deletes source volume and .backup

• vos copy
– new volumeID; must not exist
– doesn’t delete source volume nor .backup

• vos shadow
– new or old (default) volumeID
– doesn’t delete source volume nor .backup
– not in VLDB
– -incremental

vos shadows (changes)

• volIsShadow (controlled recovery)
– new bit in volume header

• vos shadow
– sets volIsShadow

• vos syncvldb
– error if volIsShadow
– override with vos syncvldb -forceshadows

vos shadows (future)

• Volume groups/families
– rw, ro, backup, clone, parentID
– where do shadows fit in?

• restoredFromID
– “….to make sure that an incremental dump is not

restored on top of something inappropriate”
– dangers

• vos shadow a
• vos shadow b -incremental

• Database vs. listvldb/listvol/paper notes

Quick Questions

Disaster Recovery & Shadows

• One to one relationship of afs server to
recovery server

• Spread afs and bfs servers across sites?
• Same host used for disaster recovery and

disk-based backup (“file restore”)
• RAID configured for space, not speed
• Shadows don’t appear in volume db
• Incremental refresh of shadows is fast

When Disaster Hits

• Identify which server is down
• Promote all volumes on shadow server to

production
• You’re back in service, with loss of only

data since last refresh of shadow
• Incrementally update shadows as frequently

as load allows - maybe 3-4 times a day

Gotchas I

• Must be careful to delete/create shadows
when doing vos move

• vos moves don’t invalidate old backups, but
shadows have problem (see later)

• slocate/updatedb is your friend
• Periodic reruns of reseq_dumps needed

Gotchas II

• Need a real db (will have soon)
• When 13 afs servers shadow/dump to 13 bfs

servers simultaneously, bandwidth suffers
• Distributing level 0s speeds disk dumps, but

makes tracking (and restore?) complex
• Per-volume dump schedules not

implemented, but only a few days work

Into The Future

• We want clones of shadows
• Do the backups from the shadows, not the

live volume
• Don’t use .backup, use clones - so 24-hour

snapshots can be available even if a full
backup takes longer than 24 hours

Use Clones Instead of Backups

• Clones should appear in db
• Let users access the multiple clones like

.backup
• Have multiple .backups (clones) available

Allow many clones

• 30 at a minimum, hundreds is better
• Avoid performance issue by making many

clones from the shadow, not the production
• When you move a shadow (it will happen),

preserve the clones

Naming issues for many clones

• Must be comprehensible to users
• May have to be dynamic
• How to make available without training

400,000 people to do fs mkm

	Distributed Backup And Disaster Recovery for AFS
	Background
	Some Useless Stats
	Process Confusion
	File Restore
	Disaster Recovery
	Archival
	Backup To Disk For File Recovery
	File Restore Basic Method
	Getting Started
	Actual Status
	Quick Questions
	vos shadows (history)
	vos shadows (changes)
	vos shadows (future)
	Disaster Recovery & Shadows
	When Disaster Hits
	Gotchas I
	Gotchas II
	Into The Future
	Use Clones Instead of Backups
	Allow many clones
	Naming issues for many clones

